Your presenter…Baba Piprani, SICOM Canada

- Senior IT Consultant with over 30 yrs standardization experience…Computer Languages, SQL, Conceptual Schema, Data Modelling, IRDS, Metadata Registry, MOF…

- Developed award winning implementations of standards-based Data Quality Firewalls with advanced generation architecture data warehouses and Web based applications using SBVR, ORM, NIAM, Master Data Management, Metadata Repositories/Registries using SQL DBMSs…

- Clients: Canadian Government departments Transport, Foreign Affairs, Defence, Superintendent of Financial Systems, Public Works…including private sector, and CNIS (China National Institute for Standardization)

- Working with Donald Chapin, John Hall and Sjir Nijssen in the progression and advancement of SBVR

Open Forum 2008

Donald Chapin
Business Semantics Ltd
United Kingdom
Co-Chair, OMG SBVR Revision Task Force

John Hall
Model Systems Ltd
United Kingdom
Co-Chair, OMG Regulatory Compliance SIG

Sjur Nijssen
PNA Group
The Netherlands
Member OMG SBVR Revision Task Force

Baba Piplani
SICOM Canada

Donald.Chapin@BusinessSemantics.com

John.Hall@modelsys.com

Sjur.Nijssen@pna-group.nl

Baba.Piplani@sicom.ca

*The Object Management Groups's new “Semantics of Business Vocabulary & Business Rules” specification
Context and Scope of This Presentation

• This presentation is about the *bridge* between:
 – the business model – especially the special purpose language (*terminology*) that the people who run organizations
 • use when they think, talk and write about
 – what they have to deal with during the course of their work, -- and
 – implemented information systems
• Semantic communities addressed are those centred around organizations
• This presentation is focused quite narrowly on only one:
 – use of terminology –
 • for specifying business data/rules requirements and designing relational databases
 – aspect of bridging from the business model to an information system –
 • the WHAT, some HOW and WHEN (*but not focusing on the WHERE, WHO or WHY*)
 – kind of metadata –
 • *semantic metadata*: data about the *meaning* of data

TOPICS

1. Need for Common Understanding

2. Terminology Science *(Terminology)* & Information Science *(Metadata & Data Models)*

3. Architecture for Transforming Terminology to Semantic Metadata & Data Models
 - based on the OMG’s new MDA Foundation Model as applied to both the Organization and its Business Application Software

4. Transforming Terminology to Semantic Metadata & Data Models
 1. Business Ontology *(A)* \(\leftrightarrow\) Consolidated Data & Rules Requirements *(B)*
 2. Business Requirements for Software *(B)* \(\leftrightarrow\) Class-of-Platform Independent Data Model *(C)*
 3. Class-of-Platform Independent Data Model *(C)* \(\leftrightarrow\) Class-of-Platform Specific Data Model *(D)*
 4. Class-of-Platform Specific Data Model *(D)* \(\leftrightarrow\) Vendor Platform Specific Data Model *(E)*

5. Using SBVR to Provide Business Semantics for Semantic Metadata & Data (ISO 11179 & 19763)
1. Problem Statement: Lack of Common Understanding

- There is widespread confusion about the differences between
 - terminology as understood in terminology science, and
 - semantic metadata and data modelling as understood in information science.

- This is particularly relevant to the OMG because the vocabulary part of SBVR is a terminology standard made rigorous in formal logic by fact-oriented modeling.

- The confusion is seen in observed problems:
 - The disagreements in the ISO community over how ISO TC 37 Terminology standards relate to ISO/IEC JTC1 SC32 WG2 Metadata standards.
 - Attempts in integrate SBVR with data modeling specifications (e.g. E/R, OMG CWM, OMG IMM, etc.) without the necessary transforms.
 - Questions about how SBVR relates to:
 - Fact-oriented Modelling (e.g. ORM, CogNIAM, etc.)
 - UML
 - W3C’s RDF and OWL
 - Direct reverse engineering of data models into the SBVR structures without adding in the SBVR semantics not found in data models;
 - i.e. not collecting or documenting the meanings of the terms as used by the people who run the organization to communicate, verbally and in writing, and not providing the transform mappings between the data structures and the terminology concepts.
Keys to a Common Understanding

• Understanding the **differences** and **inter-connections** between:

 – **Terminology**

 – as documentation of **concepts** shared among the minds of the people in some semantic community and used in their communication

 and

 Semantic Metadata & Data Models

 – as documentation of **facts and rules about**

 » **Data**, and

 » **Structures for recording/storing data**, respectively

 – **Models of the organization** (*a social system*)

 and

 Models of the IT system (*a mechanical system*)

 – the **referenced standards**, the purpose and strength of each of, and how their metamodel elements correlate

• Understanding:

 – the different kinds of models that bridge from Terminology to Implemented Databases

 – the transforms required to get from one to the other
2. Terminology Science and Information Science – Different Kinds of Documentation Artefacts

Terminology
- car, business unit
- rental car: car that is owned by EU-Rent and is used for rentals
- branch: business unit that stores cars and rents cars
- rental car is available
- branch has location
- car is stored at branch
- car is of model

Semantic Metadata (as in ISO 19763 & 11179 with business semantics supplied by SBVR)

By Car Movement
- Car Movement ID (movement-id)
- Car Group Name (group name that designates car group that is specified by car movement that is of movement-id)

By Branch
- Sending Branch ID
- Receiving Branch ID

Data Model (a model of structures for recording/storing data)

Model
- Model_id: char (8)
- model_name: char (24)
- manufacturer: char (30)
- body_style: char (12)
- fuel_type: char (12)
- engine_size: int...

Location

Business Unit

Rental Car

Branch

is of

has

is stored at

Recorded Data (using a modeled structure for data)

<table>
<thead>
<tr>
<th>Vehicle Identification Number</th>
<th>Purchase Date</th>
<th>Mileage Driven</th>
<th>Last Service Date</th>
<th>External Colour</th>
<th>Rental Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>2007-11-3</td>
<td>13,450</td>
<td>2008-03-30</td>
<td>Tan</td>
<td>Ready to Rent</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Terminology Science and Information Science – Different Kinds of Documentation Artefacts

Terminology
- car, business unit
- rental car: car that is owned by EU-Rent and is used for rentals
- branch: business unit that stores

Semantic Metadata (as in ISO 19763 & 11179 with business semantics supplied by SBVR)

By Car Movement
- Car Movement ID (movement-id)
- Car Group Name (group name that designates car group that is specified by car movement that is of movement-id)

By Branch
- Sending Branch ID (role of rental organization unit id that is of rental organization unit id designates sending branch)
- Receiving Branch ID (role of rental organization unit id that is of rental

Data Model (a model of structures for recording/storing data)

Model
- model_id: char (8)
- model_name: char (24)
- manufacturer: char (30)
- body_style: char (12)
- fuel_type: char (12)
- engine_size: int
- ...

Rental Car
- VIN: char (36)
- purchase: date
- mileage: int
- last_service: date
- colour: char(12)
- status: char (12)
- ...

Location
- Model
- Business Unit
- Branch

Recorded Data (using a modeled structure for data)

<table>
<thead>
<tr>
<th>RENTAL CAR</th>
<th>Vehicle Identification Number</th>
<th>Purchase Date</th>
<th>Mileage Driven</th>
<th>Last Service Date</th>
<th>External Colour</th>
<th>Rental Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENTAL CAR</td>
<td>123456</td>
<td>2007-11-3</td>
<td>13,450</td>
<td>2008-03-30</td>
<td>Tan</td>
<td>Ready to Rent</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Model Systems / Business Semantics
“a wheeled automotive vehicle designed for passenger transportation on streets and roadways and commonly propelled by an internal-combustion engine using a volatile fuel (as gasoline); especially a private passenger vehicle as distinguished from a bus or truck” [MWUD]

Representation of concept (US English)

1FMZU73E04ZA69101, Explorer, 20071013, 6854

Data about the thing denoted by individual concept

<table>
<thead>
<tr>
<th>Metadata</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>model</td>
</tr>
</tbody>
</table>

VIN (Vehicle Identification Number) is fixed length 17 characters, drawn from the English alphabet (excluding I, 0 and Q) and digits 0 through 9

Semantic Metadata

VIN encoding is specified in ISO 3779 and 3780

VIN: role of **VIN** that is of ‘**VIN** designates car’ (data element definition in terms of SBVR)

Although the ISO VIN format is used, the USA and the EU have adopted different encodings for VINS issued in their jurisdictions

See Reference 2. on Slide 60
Contents of Terminology, Semantic Metadata, and Data Models – Each Documents Different Things

• Things documented by the contents of:
 – **Terminology**: Concepts and Representations (*of real things*) ONLY
 • i.e. Concepts and representations in minds of, and shared among, people in a subject field, discipline, profession, community, or organization unit
 – e.g. ‘car’ → concept: “wheeled automotive vehicle designed for passenger transportation on roads …”
 – **Semantic Metadata**: Meaning of Data ONLY (*usually in terms of data elements and data values*)
 – e.g. ‘car’ → **role of VIN** that is of ‘VIN designates car’ [VIN = Vehicle Identification Number, ISO 3779, 3780]
 – **Data Models**: Structures for Recording/Storing Data ONLY (*part of the information system design*)
 – e.g. ‘car’ → information system structure for recording/storing data about cars

• What Semantic Metadata and Data Models Don’t Talk About
 – Since Concepts are **units of thought**
 – in the minds of members of a semantic community and shared among them,
 • concepts are therefore **not in themselves data**
 – Data is *propositions* taken to be true expressed by *designations for concepts* & by *identifiers* for things
 – Concepts are *communicated* by using terms, names, definitions and examples
 – *Documentation* of concepts in a **terminological dictionary or database** is a special kind of data
 – Therefore, since **semantic metadata** is “data about data” and **data models** are “data about structures for recording/storing data”,
 – semantic metadata and data models **do not document concepts**.
 – Concepts can **and should** be related to **semantic metadata** and **data models** by their representations, but they are not part of either – they are in people’s minds
Terminology Science and Information Science – Are About Different Kinds of Things

SBVR Vocabulary & Rules
- Behavioural Rules
- Business Ontology

Transformations

Procedures for people in the business
End-to-end Workflow / Process Model

IT System Model
- Automated Rules
- Data Model

Stored Data
- Customers
- Employees
- Cars

Business Policy Maker

about things in the subject world

about structures for recording/storing data

© Model Systems / Business Semantics
Open Forum 2008
Common Understanding
Opens Valuable New Opportunities

• Understanding:
 – the differences between, and inter-connections among:
 • Terminology (ISO 704 & 1087)
 • Semantic Metadata (ISO/IEC 11179 & 19763)
 • Data Models
 • Recorded Data

is the basis for the bridge from the language of business people to implemented information systems.

 – End to end traceability goes all the way from business definitions to the implement system –
 • not, as in the past, just from IS requirements to the implemented system.

• Understanding that:
 – concepts exist in the minds of people; data (recorded) exist on a medium
 – things in the subject and data about them are two very different things
 – terminologies are not metadata; they are dictionaries

is the basis for usefully inter-connecting terminology with semantic metadata and data models, and standards for them
3. Architecture for Transforming Terminology to Semantic Metadata & Data Models

BASED ON

the OMG’s new MDA Foundation Model
as applied to both
the Organization and
its Business Application Software
(See Reference Appendix A)
MDA Foundation Model:
Applicable to ANY Kind of System

Before MDA was generalized what is now called "Environment was called "CIM – Computation Independent Model"

Applicable to:
• Operating Systems
• Realtime Systems
• Process Control Systems
• Database Systems
• Business Application Software
• Organizations
• ... etc.

In addition to MDA Foundation Specification, separate documents applying it to a specific classes of systems will be published by the OMG

© Model Systems / Business Semantics
See Reference 3-5. on Slide 60
Open Forum 2008
MDA Foundation Model Applied: Business Architecture vs. Software Architecture

e.g. customers, suppliers, regulations, etc.

Environment of Business Application

Environment of
Organization Unit

Organization Unit
(which is a social system)

PIM / PSM

MDA System

Business Model

PIM - Class-of-Platform Independent Model
(with respect to Class-of-Platform) (ZF* R3)

PSM - Class-of-Platform Specific Model / (ZF R4)

PIM - Vendor Independent Model
(with respect to specific Vendor)

PSM - Vendor Specific Model (ZF R5)

Executables are generated from this for business software

© Model Systems / Business Semantics

*ZF = Zachman Framework

Open Forum 2008 15
Business Model vs. Information System Model

Business Ontology
(Formal Business Terminology)

- Structures for Data
- Constraints

... other Business Model topics:
- behavioral guidance
- business process
- organization & responsibilities
- geography & logistics

Two-Way Negotiation

Business Needs

... other Information System Model topics:
- services / methods
- network
- user interface
- etc.

Requirements Satisfied

Business Customer

IT Supplier

- ABOUT the Business
- FOR Business purposes
- FROM a Business perspective
- IN the actual language used by Business staff
- BY the Business

© Model Systems / Business Semantics
Open Forum 2008
Essential Business Model

essential business model

class-of-platform independent model of the organization

• “Essential” (as in of the essence, not as in necessary)
• Independent of whether people or automated equipment will do the work
• Used to make these decisions
• Independent of any technologies
• Used to choose technologies and design the class-of-platform specific models

essential business process model

essential business model that models business processes of the organization

• Focuses on “bringing about new, original things, directly or indirectly by communication”*
 – All tasks are about decisions, judgements, and engaging in commitments only
 – Included are the “NEED to KNOW & NEED to REMEMBER” requirements of bottom level tasks for kinds of business facts as defined in the business ontology (formal business terminology)
• Excludes all (manual and automated) information processing considerations
 – Excludes all information processing actions, transforms, movement and information storage
 – Does not include document, data or information artefacts flowing through the tasks of the process

MDA Foundation Model Applied: … to Organizations

Note: The Essential Business Model stops with the Class-of-Platform Independent Model as that is the basis for choosing technologies; e.g. people or computers for information processing.

Essential Business Model

- **Supply Chain Design – Outsourcing Decisions**
 - (both internal and external to the legal entity the organization (supply) unit belongs to)
- **Work to be Done within this Organization (Supply) Unit**
 - (independent of who or what machine will do it)
 - (e.g. design of handoffs of responsibilities for work activities)

Business Model

- **Work Designed for Specific Technologies**
 - Decision: information processing work to be delegated to the computer or done by people
 - e.g. design of manual work – independent of the specific capabilities
- **Work Designed for a Specific Implementation of the Technology**
 - e.g. detailed work instructions specific to the set of capabilities of the people who will do it
 - Business application usage documentation from software developers

Environment of the Organization Unit

- **Organization Unit**
 - (which is a social system)

PIM - Class-of-Platform Independent Model
- (ZF*R3) with respect to **Class-of-Platform**

PSM - Class-of-Platform Specific Model
- (ZF R4) with respect to **Vendor**

MDA System
- **PSM - Vendor Specific Model**
 - (ZF R5)

MDA System Environment

- Same model – two different PIM/PSM contexts

- e.g. customers, suppliers, regulations, etc.
Architecture for Making the Bridge Between Organizations and Software Real

- An architecture for Business Models and Business Application Software Models and how they relate,
 - based on the new generalization of the OMG’s Model Driven Architecture,

 provides an objective frame of reference for defining the:
 - key stages between the language of business people and implemented business application software
 - transforms between stages to connect the two

- Modeling only the “essentials” of business processes:
 - Reduces the work of modeling “business” processes
 - by eliminating information system processing actions from business consideration
 - Enables the business to concentrate on
 - what it is trying to accomplish by in the business process, and
 - what has to be done from a business point of view
4. Transforming Terminology to Semantic Metadata & Data Models
How to Recognize a Business Ontology (A-1)

- Is about real ‘business’ things
- Is about ‘recorded data’ and buckets that hold data

Business Ontology (ISO 704 & 1087 + SBVR)
(Natural Language Ontology & Policy Resources)

Essential Business Model
(rest of)
Class-of Platform Specific Model & Vendor Platform Specific Model

Business Model

See Appendix A. for definition of Business Ontology

Open Forum 2008 21
How to Recognize a Business Ontology (A-1)

car movement
Definition: planned movement of some rental car
Note: may be accomplished by a rental or by a car transfer made by a EU-Rent driver

car movement specifies car group
Necessity: Each car movement specifies exactly one car group

car movement has sending branch
Necessity: Each car movement has exactly one sending branch

car movement has receiving branch
Necessity: Each car movement has exactly one receiving branch

rental
Definition: contract that is for use of some car and is for some rental period

rental has renter
Necessity: Each rental has exactly one renter

rental includes car movement
Necessity: Each rental includes exactly one car movement

advance rental
Definition: rental that is contracted on or earlier than the day before the scheduled pickup date/time of the rental

walk-in rental
Definition: rental that is contracted on the day that the car is picked up

cash rental
Definition: rental that is paid for with money

points rental
Definition: advance rental that is paid for with loyalty club points

Examples taken from EU Rent Case Study in Annex E of SBVR 1.0 Specification (http://www.omg.org/technology/documents/br_pm_spec_catalog.htm)
How to Recognize Behavioural Business Rules (A-1)

It is obligatory that a renter has possession of at most one rental car.

It is prohibited that a barred driver is a driver of a rental.

It is obligatory that a renter who has possession of a rental car has a valid driver licence.

It is obligatory that a rental is guaranteed by an acceptable credit card that is held by the renter of the rental.

It is obligatory that a renter who has possession of a rental car is capable of driving the car safely.
How to Recognize Data Requirements of Essential Business Process Tasks (A-2)

Is about real ‘business’ things

Is about ‘recorded data’ and buckets that hold data

Business Ontology
(ISO 704 & 1087 + SBVR)
(Natural Language Ontology & Policy Resources)

Essential Business Process Task
NEED to KNOW
+
NEED to REMEMBER
Business Facts

Manual information processing component of Executable Tasks

Business Model
Class-of Platform Specific Model & Vendor Platform Specific Model

© Model Systems / Business Semantics See Appendix A. for definition of Business Ontology Open Forum 2008
How to Recognize Data Requirements of Essential Business Process Tasks (A-2)

Rental Reservation Event → Verify Renter Relationship

Provisionally commit Car Group to Rental → Gain Renter’s Commitment to Rental Cost

Commit to a Renter Relationship → Confirm Rental

Need to Know
Is this person a Renter?

Need to Know
Can a car of this group be provided by this branch for this rental period?

Need to Remember
Existence of new Rental

Need to Know
What is the tariff cost of a rental with this specification?

Need to Remember
Existence of new Renter

Need to Remember
Rental Confirmation or Cancellation

NOTE: This is an Essential Business Process Model (see slide 16). At this stage we do not know what part will be done by IT and what part by people as that is done in TRANSFORM 1.
Business Models Enable Better Software Requirements for Less

- Business Ontologies are natural language business terminologies that document the language of the business people
 - in a way that is understood in formal logic so much of the requirements for and design of application software can be automated

- Data requirements of Tasks in Essential Business Process Models are formulated with respect to doing the Task as:
 - NEED to KNOW: Questions and required kinds of business facts that answer them
 - NEED to REMEMBER: Business facts coming into existence as a result

- The NEED to KNOW / NEED to REMEMBER requirements + their supporting Business Ontology
 - provide the business input for specifying the “Consolidated Data & Rules Requirements” for new / improved application software
 - This business input will already exist in organizations that regularly document how they run their organization in Business Models, saving requirements costs
4.1

Business Ontology (A) <-> Consolidated Data & Rules Requirements (B)

Done by the Business as Part of Business Requirements for Software Specification
How to Recognize Consolidated Data & Rules Requirements (B)

Is about real ‘business’ things

Is about ‘recorded data’ and buckets that hold data

Business Ontology
(ISO 704 & 1087 + SBVR)
(Natural Language Ontology & Policy Resources)

Essential Business Process Task
NEED to KNOW +
NEED to REMEMBER
Business Facts

... etc.

Essential Business Model
Manual information processing component of Executable Tasks

(rest of)
Class-of Platform Specific Model & Vendor Platform Specific Model

Business Model

Business Information System

Business Customer

IT Supplier

See Appendix A. for definition of Consolidated Data & Rules Requirements
Transform 1:
Business Ontology (A) ↔ Consolidated Data & Rules Requirements (B)

• Establish Scope
 – Identify the Essential Business Processes within scope
 – Identify the subset of Business Ontology that supports the selected Essential Business Processes

• Specify requirements for data support of business processes by IS
 – Questions to which processes require answers (includes reports, prompts, etc. as well as queries)
 – New knowledge created in business processes that has to be remembered

• Decide what information process will be manual and what will be automated

• Identify Behavioural Business Rules that govern Business Processes
 – To be automated in software
 – To be applied by people:
 • Requirements for recording actions
 • Questions needed to support decisions

• Specify performance requirements:
 – Volumes, speed of delivery, data quality and currency, integrity, protection, archiving, etc.
 – Reporting requirements for data management; e.g. number of errors, volume of change
How to Recognize Consolidated Data & Rules Requirements (B)

- Accept Rental Booking

Questions (IS must be able to answer):
- Is this person already a EU-Rent renter?
- Can a car of this car group be provided by this pick-up branch for this rental period?
- What is the tariff cost of a rental with this specification?

New facts created (IS must be able to store and retrieve):
- (possibly) Existence of new renter
- Existence of new rental
 - rental is responsibility of renter
 - rental specifies car group
 - rental has pick-up branch
 - rental has scheduled pick-up date-time
 - rental has return branch
 - rental has scheduled return date-time
 - (possibly) rental requests car model
How to Recognize Consolidated Data & Rules Requirements (B)

Behavioural Rules

- The information system must support all process decisions that are based on behavioural rules
- The business may have decided that some behavioural rules will be enforced by software. Rules in this category may be specified as constraints, e.g.
 - A renter can have only one rental car at a time (the rental period of a rental must not overlap the rental period of any other rental of the same renter)
 - No barred driver may be a driver of a rental
- Some behavioural rules may be over-ridden by staff with appropriate authority, e.g.
 - A branch manager may waive a rental return penalty

 The data model may need to support recording of the justification, e.g. attributes ‘waived status’ and ‘reason for waiver’ on ‘rental extra charge’

- Some behavioural rules have to be enforced by people, e.g.
 - At rental pick-up time, each driver must present an original, valid driver's licence
 The data model may need to support recording of confirmation that branch staff have checked driver licences
 - No EU-Rent car may be handed over to a person who appears incapable of driving the car safely
 The data model may need to accommodate decision support information for branch staff, e.g. symptoms of alcohol or drug influence or illness, limits on height, girth and physical disabilities
Examples for Transform 1:
Business Ontology (A) ↔ Consolidated Data & Rules Requirements (B)

CASE 1: Scope - Rentals and Service Scheduling

<table>
<thead>
<tr>
<th>Business Ontology (A)</th>
<th>Consolidated Data & Rules Requ. (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant subset of Business Ontology</td>
<td>Essential business processes for Rentals and Service Scheduling: Rental Reservation, Rental Pick-up, Rental Return, Car Transfer, Service Scheduling …</td>
</tr>
</tbody>
</table>

CASE 2: Business process requirements for data

<table>
<thead>
<tr>
<th>Business Ontology (A)</th>
<th>Consolidated Data & Rules Requ. (B)</th>
</tr>
</thead>
</table>
| renter, person, driver, loyalty club member, car group, RTU, operating country, rental rate, rental, pick-up branch, drop-off branch, pick-up date-time, drop-off date time, car group, car model, renter | Question: Is this person already a renter?
Question: What is the basic tariff cost of this rental?
New fact: new rental
Constraint: rental can have at most 3 additional drivers |

CASE 3: Automated and manual processes

<table>
<thead>
<tr>
<th>Business Ontology (A)</th>
<th>Consolidated Data & Rules Requ. (B)</th>
</tr>
</thead>
</table>
| Automated: assign cars to day’s rentals
Manual: rental pick-up
Both: accept rental reservation | |

CASE 4: Operative Business Rules

<table>
<thead>
<tr>
<th>Business Ontology (A)</th>
<th>Consolidated Data & Rules Requ. (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>renter can have at most one car at a time</td>
<td>rental periods for two rentals of the same renter must not overlap</td>
</tr>
</tbody>
</table>
4.2

Business Requirements for Software (B) ↔ Class-of-Platform Independent Data Model (C)

Done by IT specialists as Part of Systems Design
How to Recognize a Class-of-Platform Independent Data Model (C)

Is about real ‘business’ things

Is about ‘recorded data’ and buckets that hold data

A-1 Business Ontology
(ISO 704 & 1087 + SBVR)
(Natural Language Ontology & Policy Resources)

A-2 Essential Business Process Task
NEED to KNOW
NEED to REMEMBER
Business Facts

… etc.

A Essential Business Model
Manual information processing component of Executable Tasks

(rest of)
Class-of Platform Specific Model & Vendor Platform Specific Model

Business Model

B Business Requirements for Software
Consolidated Data & Rules Requirements
Business meaning of recorded data

Additional Functional Requirements
Performance & Design Requirements

Transform 1
Apply Data Req of Tasks to SBVR Ontology

Transform 2
Apply to Processing Info Req. Model

Consolidated Data Requirements

Biqiff Consolidated Data & Rules Requirements

Business Information System

Two-Way Negotiation

External Design

Requirements Satisfied

Transform for Business Requirements for Software other than Data Not Shown

IT Supplier

Business Customer

Business

See Appendix A. for definition of Class-of-Platform Independent Data Model

© Model Systems / Business Semantic
Transform 2: Business Requirements for Software (B) ↔
Class-of-Platform Independent Data Model (C)

• Transform the scoped subset of the Business Ontology to data model:
 – Noun concepts to classes/entities
 • Definitional rules may be transformed into constraints on data
 • Some constraints may be placed on item representation – length, value ranges …
 • Some synonyms may be required so that different types of user can retrieve data in their own terms
 – Fact types to associations/relationships

Validate the data model for support of ‘need to know’ and ‘need to remember’ requirements of Essential Business Processes:
 – Start point – identified by data provided by the business process
 – ‘Navigable path’ through the data model, accessing all required data items

• Ensure support for Behavioural Rules
 – Rules that are to be automated:
 • Strictly-enforced - may become specifications of constraints on data
 • Not strictly enforced – IS will need to request a user decision, and perhaps record reason for level of enforcement applied
 – Rules that are to be applied by people:
 • May need decision support information, and to record violations detected

Grouping noun concepts into entities/classes and attributes may be done in this transformation, or later. For example, in CogNIAM and ORM, this transformation could produce a scoped fact model to meet requirements, and a later transformation would produce a data model with attributes).
How to Recognize a Class-of-Platform Independent Data Model (C)

Fragment of a class-of-platform-independent data model in UML notation
Class-of-Platform Independent Model (C) – alternative target: Scoped Fact Model

Fragment of a fact model in CogNIAM notation

car model [car model]

7: [model id] <model id> identifies a specific [car model]

car model has engine capacity [car model has engine capacity]

9: [car model] <car model> has [engine capacity] <engine capacity>

rental car [rental car]

16: [VIN] <VIN> identifies a specific [rental car]

© Model Systems / Business Semantics Open Forum 2008
Examples for Transform 2:
Business Requirements for Software (B) ↔ Class-of-Platform Independent Data Model (C)

CASE 1: Business Ontology to Data Model

<table>
<thead>
<tr>
<th>Business Requirements for Software (B)</th>
<th>Class-of-Platform Independent Data Model (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rental, car movement ..</td>
<td>Classes, with association 'rental includes car movement'</td>
</tr>
<tr>
<td>booking date-time, sending branch, receiving branch ..</td>
<td>Attributes</td>
</tr>
</tbody>
</table>

CASE 2: Validate support for ‘Need to Know’

<table>
<thead>
<tr>
<th>Business Requirements for Software (B)</th>
<th>Class-of-Platform Independent Data Model (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the tariff charge for a rental with this specification?</td>
<td>Derivation: decompose rental period into RTUs</td>
</tr>
<tr>
<td>Path 1: branch – site – operating country - currency</td>
<td>Path 2 car group - rental rate for country and RTU</td>
</tr>
</tbody>
</table>

CASE 3: Validate support for ‘Need to Remember’

<table>
<thead>
<tr>
<th>Business Requirements for Software (B)</th>
<th>Class-of-Platform Independent Data Model (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New rental</td>
<td>car movement (car group, sending and receiving branch)</td>
</tr>
<tr>
<td></td>
<td>rental (booking date-time, scheduled pick-up and return date-times, state = provisional)</td>
</tr>
</tbody>
</table>

CASE 4: Support for Behavioural Rules

<table>
<thead>
<tr>
<th>Business Requirements for Software (B)</th>
<th>Class-of-Platform Independent Data Model (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated: renter has at most one car at a time</td>
<td>rental – renter – rental</td>
</tr>
<tr>
<td>Manual: driver must have original valid licence</td>
<td>Additional attribute of rental: “licence checked”</td>
</tr>
</tbody>
</table>
4.3
Class-of-Platform Independent Data Model (C) ↔
Class-of-Platform Specific Data Model (D)

Done by IT specialists as Part of Systems Design
How to Recognize a Class-of-Platform Specific Data Model (D)

Is about real ‘business’ things

Is about ‘recorded data’ and buckets that hold data

A-1 Business Ontology (ISO 704 & 1087 + SBVR)
(Natural Language Ontology & Policy Resources)

A-2 Essential Business Process Task
NEED to KNOW
+ NEED to REMEMBER
Business Facts

Business Information System

B Business Requirements for Software
Consolidated Data & Rules Requirements
Business meaning of recorded data

Additional Functional Requirements
Performance & Design Requirements

Transform 1
Apply Data Req of Tasks to SBVR Ontology

Transform for Business Requirements for Software other than Data Not Shown

Transform 2
Apply to Processing Info Req. Model

Transform 3
Apply CoP to Tech.-Indep. Model

Two-Way Negotiation

Business Customer

IT Supplier

External Design

Requirements Satisfied

C Class-of-Platform Independent Model
Logical Data Model – Data Storage Un-optimized

D Class-of-Platform Specific Model / Vendor Platform Independent Model
Relational Data Model – Optimized independent of Vendor

A-3 Manual information processing component of Executable Tasks
(rest of)
Class-of-Platform Specific Model & Vendor Platform Specific Model

Business Model

See Appendix A. for definition of Class-of-Platform Specific Data Model
Transform 3: Class-of-Platform-Independent Data Model (C) ↔ Class-of-Platform-Specific Data Model (D)

The detail of the transform will vary, depending on the target class of platform

Example – relational class of platform

• If attributes were not grouped into entities in transformation 2, do so

• Resolve many-to-many associations with associative entities

• Designate or create primary key(s) for each entity

• Ensure that each association is supported with keys
 – Introduce foreign keys into ‘child’ entities as necessary

• Ensure that all constraints are mapped from previously defined definitions and business rules and are supported:
 – Document any that need to be applied by processes
How to Recognize a Class-of-Platform Specific Data Model (D)

Model for relational class of platform in IDEF1-X notation
Examples for Transform 3:

Class-of-Platform Independent Data Model (C) ↔ Class-of-Platform Specific Data Model (D)

CASE 1: Direct correspondence

<table>
<thead>
<tr>
<th>Class-of-Platform Independent Data Model (C)</th>
<th>Class-of-Platform Specific Data Model (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes and non-key attributes correspond directly, except for subtypes of 'car movement'</td>
<td>There is little risk in a relational design in merging 'car movement' and its simple subtypes. A 'movement type' attribute is introduced to distinguish instances.</td>
</tr>
</tbody>
</table>

CASE 2: Primary keys

<table>
<thead>
<tr>
<th>Class-of-Platform Independent Data Model (C)</th>
<th>Class-of-Platform Specific Data Model (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some business identifiers are suitable as primary keys</td>
<td>E.g. VIN, movement id, group name</td>
</tr>
<tr>
<td>Primary keys have to be defined for all entities</td>
<td>Specified, or inherited via defining relationships, e.g. 'movement id' is used as primary key for rental – with role name 'rental id'.</td>
</tr>
</tbody>
</table>

CASE 3: Associations

<table>
<thead>
<tr>
<th>Class-of-Platform Independent Data Model (C)</th>
<th>Class-of-Platform Specific Data Model (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associations are modelled with foreign keys</td>
<td>The primary key of the 'parent' entity is used as a foreign key in the 'child' entity, e.g. 'renter id' in 'rental'</td>
</tr>
</tbody>
</table>

CASE 4: Specialization

<table>
<thead>
<tr>
<th>Class-of-Platform Independent Data Model (C)</th>
<th>Class-of-Platform Specific Data Model (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type indicators have been added to supertypes, to distinguish subtypes (common IDEF1-X practice),</td>
<td>E.g. 'driver type' in 'driver', 'payment type' in 'advance rental'</td>
</tr>
</tbody>
</table>
4.4
Class-of-Platform Specific Data Model (D) ↔
Vendor Platform Specific Data Model (E)

Done by IT specialists as part of Systems Design
How to Recognize a Vendor Platform Specific Data Model (E)

Is about real ‘business’ things

Is about ‘recorded data’ and buckets that hold data

A-1 Business Ontology (ISO 704 & 1087 + SBVR) (Natural Language Ontology & Policy Resources)

A-2 Essential Business Model

Business Information System

Business Requirements for Software

Consolidated Data & Rules Requirements

Business meaning of recorded data

Transform 1 Apply Data Req of Tasks to SBVR Ontology

Additional Functional Requirements

Performance & Design Requirements

Transform 2 Apply to Processing Info Req. Model

Transform 3 Apply CoIP to Tech.-Indep. Model

Transform 4 Apply Vendor to CoIP Model

Class-of-Platform Independent Model

Logical Data Model – Data Storage Un-optimized

Class-of-Platform Specific Model / Vendor Platform Independent Model

Relational Data Model – Optimized independent of Vendor

Vendor Platform Specific Model

Relational Data Model – Relational Vendor-Specific Optimizations

Business Customer

IT Supplier

Two-Way Negotiation

External Design

Business

Information System

© Model Systems / Business Semantic

See Appendix A. for definition of Vendor Platform Specific Data Model
Transform 4: Class-of-Platform-Specific Data Model (D) \(\leftrightarrow\) Vendor Platform Specific Data Model (E)

The detail of the transform will vary, depending on the target platform

- Example – relational platform
 - Usually, the modelling tool can provide an automated “first-cut” design
 - The DBA can then optimize for performance:
 - Merging subtypes
 - Denormalizing
 - Changing placement options
 - Deciding on indexes
 - Etc …
How to Recognize a Vendor Platform Specific Data Model (E)

<table>
<thead>
<tr>
<th>PERSON</th>
<th>RENTAL</th>
<th>CAR_MOVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>person-id (pk)</td>
<td>movement_id (pk)</td>
<td>movement_id (pk)</td>
</tr>
<tr>
<td>person_name</td>
<td>person_id (fk)</td>
<td>group_name (fk)</td>
</tr>
<tr>
<td>contact_details</td>
<td>non-local_currency (fk)</td>
<td>rental_car_VIN</td>
</tr>
<tr>
<td>ISO_country (fk)</td>
<td>booking_mode_indicator</td>
<td>sending_branch</td>
</tr>
<tr>
<td>renter_indicator</td>
<td>booking_date-time</td>
<td>ISO_country</td>
</tr>
<tr>
<td>driver_indicator</td>
<td>scheduled_pick_up_date-time</td>
<td>receiving_branch</td>
</tr>
<tr>
<td>driver_license</td>
<td>scheduled_return_date-time</td>
<td>scheduled_date</td>
</tr>
<tr>
<td>driver_state</td>
<td>requested_car_model</td>
<td>movement_type_indicator</td>
</tr>
<tr>
<td></td>
<td>payment_type_indicator</td>
<td>movement_direction_indicator</td>
</tr>
<tr>
<td></td>
<td>basic_rental_price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest_rental_price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loyalty_club_id (fk)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>points_rental_price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>credit_card</td>
<td></td>
</tr>
<tr>
<td></td>
<td>valid_cc_flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>valid_license_flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>estimated_rental_charge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>actual_rental_charge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>points_flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>points_rental_price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rental_state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loyalty_club_id (fk)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loyalty_club_id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>points_balance</td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>person_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td>ISO_country</td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>person_id</td>
<td></td>
</tr>
<tr>
<td>loyalty_club_id</td>
<td>loyalty_club_id</td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>person_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td>loyalty_club_id</td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>movement_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>movement_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>movement_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexed on:</td>
<td>movement_id</td>
<td></td>
</tr>
<tr>
<td>person_id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Model Systems / Business Semantics
Open Forum 2008 47
Examples for Transform 4:
Class-of-Platform Specific Data Model (D) ↔ Vendor Platform Specific Data Model (E)

CASE 1: One-to-one correspondence

<table>
<thead>
<tr>
<th>Class-of-Platform Specific Data Model (D)</th>
<th>Vendor Platform Specific Data Model (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity ‘club member’ and its attributes</td>
<td>Table CLUB_MEMBER, with person_id as primary key</td>
</tr>
<tr>
<td>Note: ‘renter id’ is a role name of ‘person id’</td>
<td></td>
</tr>
</tbody>
</table>

CASE 2: Subtypes and supertype merged

<table>
<thead>
<tr>
<th>Class-of-Platform Specific Data Model (D)</th>
<th>Vendor Platform Specific Data Model (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘person’, ‘driver’ and ‘renter’ and their attributes</td>
<td>Table PERSON and table RENTAL with ‘advance rental state’ merged into rental_state</td>
</tr>
<tr>
<td>‘rental’ and its subtypes and their attributes</td>
<td>Indicators are added to distinguish subtypes</td>
</tr>
<tr>
<td></td>
<td>Null values are permitted for subtypes’ attributes</td>
</tr>
</tbody>
</table>

CASE 3: Denormalization for performance (1)

<table>
<thead>
<tr>
<th>Class-of-Platform Specific Data Model (D)</th>
<th>Vendor Platform Specific Data Model (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘country of rental’ is ‘country of site of sending branch of car movement included in rental’</td>
<td>ISO_country is included in table CAR_MOVEMENT to partition rentals by country</td>
</tr>
</tbody>
</table>

CASE 4: Denormalization for performance (2)

<table>
<thead>
<tr>
<th>Class-of-Platform Specific Data Model (D)</th>
<th>Vendor Platform Specific Data Model (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes ‘pick-up date-time’ and ‘drop-off date-time’ of car movement are actual values recorded after the events</td>
<td>They are stored in a separate table to reduce the size of the heavily-indexed CAR_MOVEMENT table.</td>
</tr>
</tbody>
</table>
4.5
Optimization and Trade-offs
Transformation Short Cuts
Transform Shortcuts for Specific Situations

Shortcuts that Continue to Bridge the Way Business People Think, Talk & Write and Implemented Software

Combine Transforms 3 & 4:
- Ability to more easily implement the Class-of-Platform Specific Model with a different vendors product will be significant reduced

Combine Transforms 2 & 3:
- Ability to more easily implement the information system architecture using a different class-of-platform will be significant reduced

Combine Transforms 2, 3 & 4:
- Implementing with a different vendor or class-of platform and vendor will require an almost complete redesign of the information processing system

Combine Transforms 1 & 2:
- Ability to trace and deal with all the impacts of changes in the essential business process and its data needs will be greatly reduced

Shortcuts the Diminish the Software's Connectedness to the Way Business People Think, Talk & Write

Omitting or Inadequately Performing Transform 1:
- Not keeping and managing a business ontology (A) as a language asset for the organization
- Not using and staying connected to an active business ontology (A) while creating Consolidated Data & Rules Requirements Specifications

Omitting or Inadequately Performing Transform 2:
- Not creating a Consolidated Data & Rules Requirements (B) based on data originations and uses in the business of the organization
- Not using and staying connected with an Consolidated Data & Rules Requirements (B) or the logical data model (class-of-platform independent data model (C))

Only Maintaining the Physical Data Model:
- Not Maintaining the logical data model (C) or staying connected to the business ontology (A) in place of that

© Model Systems / Business Semantics
Open Forum 2008 50
Architecture the Bridge Between Organizations and Software – Best of Both Worlds

• With the upcoming OMG MDA Architecture for Organizations and Business Application Software, it will be possible to create a design:

 – for application software that:
 • communicates with business users in their own language, and
 • implements their business policies
 • enforces the data constraints implicit in Business Ontology concept definitions

 – appropriate to strategic needs

 • portability:
 – across technologies (classes-of-platform), and
 – across vendors

 or

 • low cost and time to completion

 – designed most quickly for least cost for a single technology (class-of-platform), or vendor where that is all that is needed strategically
5. Using SBVR to Provide Business Semantics for Semantic Metadata & Data:

When I Look at a Piece of Data, How Do I Know What It Means?

SBVR ↔ Data Elements & Data Categories
(+ ISO 704 & 1087) (ISO/IEC 11179) (ISO 12620)
SBVR is a Synthesis from Four Disciplines

1. TERMINOLOGY & VOCABULARY:

 - **The foundation for SBVR** is ISO TC 37 (Terminology and Language & other Content Resources) terminology science standards ISO 704 and 1087

 • About human communication using special purpose language in the context of natural language

2. FACT-ORIENTED MODELING with interpretation in FORMAL LOGIC:

 - **The precision of formal logic** was added to ISO 1087-1 concepts, designations, and concept relations by fact-oriented modeling*

 • Precise meanings for SBVR Vocabulary and Behavioral Guidance enables them to be transformed into IT system designs without losing or changing the business semantics.

SBVR 1.0 Specification (http://www.omg.org/technology/documents/br_pm_spec_catalog.htm)
SBVR is a Synthesis from Four Disciplines

3. LINGUISTICS & LINGUISTIC ANNOTATION OF NATURAL LANGUAGE GRAMMAR

– **Target natural language grammar structures** (*external to SBVR*) were provided by:
 – linguistics,
 – ISO TC 37/SC 4 “Linguistic Representation” standards, and
 – De-facto industry standards

as input to the design of SBVR **semantic formulations** so that they would both:

– adequately formulate in logic with a formal interpretation the most complicated **definitions** and **logic statements** expressed using selected natural language grammar features, and

– adequately connect these **definitions and logic statements** to the underlying SBVR vocabulary of concepts and representations via verb concepts (*ISO TC 37 concept relations made formal by fact-oriented modeling*)

– Provided the basis for a future rich multilingual natural language notation for SBVR

4. BUSINESS PRACTICE of VOCABULARY & BUSINESS RULES:

– **Practical applicability of SBVR in Organizations** was provided by hundreds of collective man-years experience in business consultancy applying vocabulary and business rule approaches to the needs of organizations
How SBVR Integrates Several Approaches

How SBVR Relates to Existing Language Resources

Business Terminology + Rules

= Business Glossary
(Noun Concepts, Definitions & Primary Terms)
(+)

Taxonomy
(General/Specific + Whole/Part Hierarchical Relationships)
+

Thesaurus
(Synonyms, Acronyms, Abbreviations, etc. + Multilingual)
(Instances of Concepts e.g. Business Events & Business Entities)

(Verb Concepts {Business Facts; Relations among Concepts})
+

Ontology
(Relations among Instances of Concepts)
(Definitional Rules)
(Definitions, Relationships & Rules specified in formal logic)
+

Business Rules
(Rules Governing Business Actions)
Ways SBVR Relates to ISO/IEC 19763 Metamodel Framework

• SBVR is a natural language (linguistics-based) ontology that:
 – is ISO 704 & 1087-1 turned into an ontology by the integration of fact-oriented modelling and its interpretation in formal logic
 – Should be added to the ontology language list in Annex C of ISO/IEC 19763-3
 – serves as one of the ontologies in figure 3 of ISO/IEC 19763-1

• The “Architecture for Transforming Terminology to Semantic Metadata & Data Models” is one architecture for transform mappings between ontologies and metadata registries.

• SBVR vocabulary (aka terminology) can provide the business meanings for data in metadata registries via ISO/IEC 11179
 – For details see “When I Look at a Piece of Data, How Do I Know What It Means?” in this presentation
Challenge: Combine Data, Metadata & Concept Systems

Inference Search Query:
“find water bodies downstream from Fletcher Creek where chemical contamination was over 10 micrograms per liter between December 2001 and March 2003”

Data:

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Temp</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>06-09-13</td>
<td>4.4</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>06-09-13</td>
<td>9.3</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>06-09-13</td>
<td>6.7</td>
<td>78</td>
</tr>
</tbody>
</table>

Metadata:

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>text</td>
<td>Monitoring Station Identifier</td>
<td>not applicable</td>
</tr>
<tr>
<td>Date</td>
<td>date</td>
<td>Date</td>
<td>yy-mm-dd</td>
</tr>
<tr>
<td>Temp</td>
<td>number</td>
<td>Temperature (to 0.1 degree C)</td>
<td>degrees Celcius</td>
</tr>
<tr>
<td>Hg</td>
<td>number</td>
<td>Mercury contamination</td>
<td>micrograms per liter</td>
</tr>
</tbody>
</table>

Concept system:

Contamination
- Biological
- Radioactive
- Chemical
 - mercury
 - lead
 - cadmium

From ISO/IEC 11179 presentation by Bruce Bargmeyer
(http://hpcrd.lbl.gov/SDM/XMDR/presentations/Bruce%20Bargmeyer-XMDR%20&%20Ecoinformatics-V10%20for%20Plenary-2006-10-224.ppt)
SBVR Model Elements Interconnected with ISO/IEC 11179 Model Elements

Example borrowed from UDEF Tutorial [http://www.omg.org/docs/realtime/07-09-02.ppt]

Data Element Concept

Person

Property

Gender

Conceptual Domain

Concept

Representation

Data Element

Value Domain

Object Class

Interconnects with SBVR ‘noun concept’

Interconnects with SBVR ‘noun concept’

Interconnects with SBVR “set of ‘individual concepts’ for a given ‘noun concept’ or “set of ‘subcategories’ of a given ‘noun concept’

Gender Concepts
- Male
- Female
- Other

Sex_Code (Census)
- 01 – Male
- 02 - Female

Gender_Code (HHS)
- M - Male
- F – Female
- O - Other

Gender_Type (NIH)
- XY - Male
- XX – Female
- XXY – Underdeveloped Male
- XYY – Overdeveloped Male
- X – Underdeveloped Female

© Model Systems / Business Semantics
Using SBVR Structured English Definitions to Give Loosely Coupled Business Semantics to ISO/IEC 11179 Data Elements

- Interconnect DATA ELEMENT & DATA VALUE to SBVR “‘Expression’ of ‘Representation’”
 - Car Movement ID: (movement-id)
 - VIN: (role of VIN that is of ‘VIN designates car’)
 [VIN = Vehicle Identification Number, ISO 3779, 3780]
 - Car Group Name: (group name that designates car group that is specified by car movement that is of movement-id)

- Interconnect DATA ELEMENTS CONCEPT to SBVR ‘Verb Concept’
 - (car movement specifies car group)

- Interconnect CONCEPTUAL DOMAIN to SBVR:
 - “set of ‘individual concepts’ for a given ‘noun concept’, or
 - “set of ‘subcategories’ of a given ‘noun concept’
 - Individual Concepts comprising the conceptual domain of car group:
 - (Economy)
 - (Compact)
 - (Intermediate)
 - (Full Sized)

- Interconnect OBJECT CLASS & PROPERTY to SBVR ‘Noun Concept’
 - (car group)
 - (car movement)
 - (transfer date)

Examples taken from EU Rent Case Study in Annex E of SBVR 1.0 Specification
(http://www.omg.org/technology/documents/br_pm_spec_catalog.htm)
SBVR Business Ontologies Connect Semantic Metadata to the Actual Language Business People Use

• The organization is free to document, maintain and manage its language resources in Business Ontologies
 – in a way that is consistent with all of its intended uses

• IT is free to document, maintain and manage its data an IT Metadata Registry
 – In a way that is best given its infrastructure, platforms, vendors and capabilities

• The two can be maintained independently
 – with requests in either way between the business and IT for additions and changed connections between them

• The meaning of data is specified by real business semantics –
 – the concept definitions business people use to think, talk and write
References in this Presentation

1. “Semantics of Business Vocabulary and Business Rules (SBVR) 1.0 Specification
2. “Comparison of Many Aspects of Terminology, Semantic Metadata, Data Models & Data” Chart
3. OMG’s “The MDA Foundation Model”
 http://www.omg.org/cgi-bin/doc?ormsc/07-06-03.pdf
4. “MDA Foundational Model applied to both the Organization and Business Application Software” Diagram v1-0
5. “Business Architecture as the Application of the MDA Foundation Model to ‘Organizations’”
 Presentation to Open Group Business Architecture Working Group, Glasgow, April 23, 2008
6. The Deep Structure of Business Processes, Jan L.G. Dietz
 http://www.demo.nl/option/com_docman/task,doc_download/gid,1/Itemid,81/
7. “Approximate Traceability from Terminology/SBVR to Data Models” Chart
Appendix A.

Terminology Used
Definitions Based on MDA Foundation Model and ISO 1087-1

model *(generalized from MDA model)*

set of all the **expressions** of a single **system definition** of a **set of interrelated concepts** that are in the minds of, and shared among, the members of a semantic community, that are conceptualized for a specific purpose of a given subject field.

system model *(syn: MDA model)*

- More General Concept
 - **model**
- Delimiting Characteristics
 - the semantic community is the community of developers of the system
 - the given subject field is “developing some concrete or abstract thing of interest as a system”
 - the interrelated concepts are related to the thing by an explicit or implicit isomorphism

expression

something that manifests a system definition in (a) specified notation(s) and is recorded in a specified medium

system definition

formulation into an abstract syntax of the meaning of a **set of interrelated concepts** that are conceptualized for a specific purpose using given language specification; e.g. UML, OWL, ORM, etc.

set of interrelated concepts

synonyms:
- **concepts system** [ISO 1087-1 (3.2.11)]
- **body of shared concepts** [SBVR]

NOTE: These definitions are based on “The MDA Foundation Model” Section 2. “Models” *(HTTP://www.omg.org/docs/ormsc/07-06-03.pdf)*
Definitions Based on MDA Foundation Model and ISO 1087-1

terminological dictionary

– collection of terminological entries (3.8.2) presenting information related to concepts (3.2.1) or designations (3.4.1) from one or more specific subject fields (3.1.2) [ISO 1087-1 (3.7.1)]

Equivalent Definition from MDA: (syn: model)

set of all the expressions of a single system definition of a set of interrelated concepts that are in the minds of, and shared among, the members of a semantic community, that are conceptualized for a specific purpose of a given subject field

– Additional characteristics true of all ISO 407 / 1087-1, 1087-2 terminological dictionaries:

 • always documents the special purpose language for the subject field
 • designations (3.4.1) always talk about (denote) things (objects 3.1.1) in the subject world and NOT anything else in the terminological data collection
 • meaning (concept 3.2.1) separated from expression (designation 3.4.1)
 • words comprising terms are in a natural language and chosen to be the best natural language equivalent of the meaning of the concept (see ISO 704:2000 section 7.3 “Term Formation”)

– Additional characteristics true of all SBVR terminological dictionaries:

 • always documents the special purpose language of the semantic community
 • semantic community is identified and unambiguously defined, often identified by reference to a discipline, subject field, or one or more organization units

Definitions Based on MDA Foundation Model and ISO 1087-1

ontology

description of a universe of discourse in a language that a computer can process
[ISO/IEC 19763-3 (4.2.2)]

natural language ontology (syn: formal terminology)

– More General Concept
 • ontology

– Delimiting Characteristics
 • conceptualized in a same way the semantic community thinks & communicates about it
 • with terms and names formed from natural language

Equivalent Definition from ISO 1087-1:

• More General Concept
 – terminological dictionary

• Delimiting Characteristics
 – defined in a way that gives it an adequate interpretation in formal logic

business ontology (syn: formal business terminology)

– More General Concept
 • natural language ontology

– Delimiting Characteristics
 • subject world of the natural language ontology is any aspect of the context, design, management or operation of an organization and its products/services, except for Business Requirements for Software specification and software development
Business Requirements for Software Terms

specification

a detailed precise presentation of something or of a plan or proposal for something [Merriam-Webster Collegiate Dictionary 2a]

requirement

- something that is needed for a particular purpose *(often used in the plural)* [Encarta]

business requirements for software specification *(syn: business requirements for software)*

- More General Concept
 - specification
 - requirement

- Delimiting Characteristics
 - The thing for which requirements are being specified is a software system
 - the particular purpose for the requirements is the automation of selected information processing and business decision-making by the organization for which the software is a business resource
 - the content of the requirements specification includes:
 - Software capability required
 » That for which the software should do something
 » What the software should do with that
 - Software quality required
 » How well the software should be materialized
 » How well the software should do what it does
Business Requirements for Software Terms

consolidated data & rules requirements

part of a **business requirements for software specification** that contains only *that for which the software should do something*, including:

- Kinds of Business Facts with Reference Schemes and their requirement context, e.g. bottom level activity for essential business processes
 - NEED to KNOW
 - NEED to REMEMBER
 - NEED in OFFICIAL/LEGAL DOCUMENT
 - NEED for AUDIT (*intermediate data between system inputs and outputs*)
- Terminological entries which provide the business semantics for the business facts, including concepts covering events and states
- Structural Rules made explicit from intensional definitions and modified for recording requirements
- Time for which business facts must be true and timeliness (*recording lag from occurrence*)
- Data integrity points required; *e.g. month-end closing, input batches, etc.*
- Behavioural rules
Some Key MDA Terms (1)

class-of-platform independent model:

model that is independent of any particular class of platform

 e.g. specific to document, relational database, object-oriented database, messaging system, etc.

class-of-platform specific model

(syn: vendor platform independent model):

model that is optimized for with a given class of platform, but independent of any specific vendor platform;

 e.g. specific to relational database, but independent of Oracle, IBM, Microsoft, etc.

vendor platform specific model:

model that is optimized for a single vendor’s platform of a given class of platform;

 e.g. HP Photosmart 3310 All-in-One; SQL Server; Versant; MQ Series
Some Key MDA Terms (2)

software model

- More General Concept
 - *system model* that models the class of system: software

class-of-platform independent data model

- More General Concepts
 - *software model* that is a *class-of-platform independent model* that contains only structures for recording/storing data
Some Key MDA Terms (3)

class-of-platform specific data model

- **software model** that is a **class-of-platform specific model**
 and contains only structures for recording/storing data

vendor platform specific data model

- **software model** that is a **vendor platform specific model**
 and contains only structures for recording/storing data
Essential Business Model

essential business model

class-of-platform independent model of the organization

- “Essential” (as in *of the essence*, not as in *necessary*)
- Independent of whether people or automated equipment will do the work
- Used to make these decisions
- Independent of any technologies
- Used to choose technologies and design the class-of-platform specific models

essential business process model

essential business model that models business processes of the organization

- Focuses on “bringing about new, original things, directly or indirectly by communication”*
 - All tasks are about decisions, judgements, and engaging in commitments only
 - Included are the “**NEED to KNOW & NEED to REMEMBER**” requirements of bottom level tasks for kinds of business facts as defined in the business ontology (formal business terminology)
- Excludes all *(manual and automated)* information processing considerations
 - Excludes all information processing actions, transforms, movement and information storage
 - Does not include document, data or information artefacts flowing through the tasks of the process

Appendix B.

CogNIAM Notation Example
27. [Branch name] <branch name> identifies a specific [branch]

branch has branch type [branch has branch type] branch has car storage capacity [branch has car storage capacity] branch has hours of operation [branch has hours of operation]

28. [branch] <branch> has [branch type] <branch type>
29. [branch] <branch> has [car storage capacity] <car storage capacity>
30. [branch] <branch> has [hours of operation] <hours of operation>

24. [car model] <car model> is with [car body style] <car body style>
25. [car body style] <car body style> is of [car model] <car model>