Information technology—Metamodel framework for interoperability (MFI) –

Part 5: Metamodel for process model registration

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard. Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
Contents

Foreword..v
Introduction ..vi
1 Scope ...1
2 Conformance ...1
 2.1 General ...1
 2.2 Degree of conformance ...1
 2.2.1 General ...1
 2.2.2 Strictly conforming implementation ...2
 2.2.3 Conforming implementation ...2
 2.3 Implementation Conformance Statement (ICS) ..2
3 Normative references ..2
4 Terms, definitions and abbreviated terms ..3
 4.1 Terms and definitions ..3
 4.2 Abbreviated terms ...3
5 Structure of MFI Process ..4
 5.1 Overview of MFI Process ..4
 5.2 Relationship between MFI Process and other parts in MFI ..5
 5.3 MFI Process ...6
 5.3.1 Process ..7
 5.3.2 Process_Model ...8
 5.3.3 Process_Modeling_Language ..8
 5.3.4 Composite_Process ..9
 5.3.5 Atomic_Process ...9
 5.3.6 Event ..10
 5.3.7 Input ...10
 5.3.8 Output ...11
 5.3.9 Resource ..12
 5.3.10 Control_Construct ..12
 5.3.11 Precondition ...13
 5.3.12 Postcondition ..13

Annex A (informative) Examples of MFI Process registration ...14
Annex B (informative) Collaboration between MFI members ..18
Annex C (informative) List of process modeling languages ..19
Annex D (informative) Code type lists ..20
Figures and tables

Figure 1 – The scope of MFI process .. 1
Figure 2 – The metamodel for process model registration .. 5
Figure 3 – Relationship between MFI Process and other parts in MFI ... 6
Figure A.1 – Registration information of BravoAir Reservation Service .. 15
Figure A.2 – Registration Information of top level process for manufacturing GT350 Error! Bookmark not defined.
Figure A.3 – Registration information of some sub-processes of manufacturing GT350 17
Figure B.1 – Semantic interoperation based on MFI Process and MFI Ontology registration 18
Table C.1 – List of Process_Modeling_Languages ... 19
Table D.1 – Code type list of state of a process ... 20
Table D.2 – Code type list of state of a resource ... 20
Table D.3 – Code type list of control construct ... 21
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC WD 19763 may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19763 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 32, Data Management and Interchange.

ISO/IEC 19763 consists of the following parts, under the general title Information technology — Metamodel Framework for Interoperability:

Part 1: Reference Model

Part 2: Core Model

Part 3: Metamodel for ontology registration

Part 4: Metamodel for model mapping

Part 5: Metamodel for process model registration

Part 6: Registration procedures

Part 7: Metamodel for service registration

Part 8: Metamodel for role and goal registration

Part 9: On Demand Model Selection (ODMS) [Technical Report]
Introduction

Across-organizational collaboration and integration are blooming to provide better service for discriminating users. Discovery and reuse of process models registered in different repositories becomes the key issue to promote interoperation between them.

Many industrial consortia have contributed to standardization of domain specific process models using various representation notations and description languages for different purpose. The great differences in the syntax and semantic of process models will hamper sharing of them. It is necessary to provide a generic metamodel to support registration of administrative information of process models, having no reference to details of languages it adopts and platform it executes.

This part of ISO/IEC 19763 intends to provide a metamodel to register administrative information of process models.
Information Technology—Metamodel Framework for Interoperability—Part 5: Metamodel for process model registration

1 Scope

The primary purpose of the multipart standard ISO/IEC 19763 is to specify a metamodel framework for interoperability. This part of ISO/IEC 19763 specifies the metamodel that provides a facility to register administrative information of process models.

The metamodel specified in this part is intended to promote discovery and reuse of process models within/across process model repositories. It provides administrative information of process models which have been created with a specific process modeling language, including Process Specification Language (PSL), Business Process Execution Language (BPEL), Web Ontology Language for Web Service (OWL-S), etc. Figure 1 shows the scope of this part.

![Figure 1 – The scope of MFI process](image)

The followings are outside the scope of this part of ISO/IEC 19763:
- details related to modeling notations or descriptive languages of process models;
- runtime environment or implementation platforms for executing processes.

2 Conformance

2.1 General

An implementation claiming conformance with this part of ISO/IEC 19763 shall support the metamodel specified in 5.3, depending on a degree of conformance as described below.

2.2 Degree of conformance

2.2.1 General

The distinction between “strictly conforming” and “conforming” implementations is necessary to address the simultaneous needs for interoperability and extensions. This part of ISO/IEC 19763 describes specifications that promote interoperability. Extensions are motivated by needs of users, vendors, institutions and industries, but are not specified by this part of ISO/IEC 19763.
A strictly conforming implementation may be limited in usefulness but is maximally interoperable with respect to this part of ISO/IEC 19763. A conforming implementation may be more useful, but may be less interoperable with respect to this part of ISO/IEC 19763.

2.2.2 Strictly conforming implementation

A strictly conforming implementation

a) shall support the metamodel specified in 5.3;

b) shall not support any extensions to the metamodel specified in 5.3.

2.2.3 Conforming implementation

A conforming implementation

a) shall support the metamodel specified in 5.3;

b) may support extensions to the metamodel specified in 5.3 that are consistent with the metamodel specified in 5.3.

2.3 Implementation Conformance Statement (ICS)

An implementation claiming conformance with this part of ISO/IEC 19763 shall include an Implementation Conformance Statement stating

a) whether it is a strictly conforming implementation or a conforming implementation (2.2);

b) what extensions are supported if it is a conforming implementation.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 19763-2, Information technology – Metamodel framework for interoperability (MFI) – Part 2: Core model

ISO/IEC 11179-3:2003, Information technology – Metadata registries (MDR) – Part 3: Registry metamodel and basic attributes

4 Terms, definitions and abbreviated terms

4.1 Terms and definitions

4.1.1 Process
a set of activities and resources, organized according to constraints, which all participate in fulfilling a given purpose.

4.1.2 Process model
a specification that is the result of modeling one or more processes, adopting a specific process modeling language to describe features of a process. It shows what the process does and how it is done.

4.1.3 Sub-process
a process that is contained in another process.
NOTE a sub-process may be an atomic process, or a composite process.

4.1.4 Atomic process
a process that does not have a sub-process.

4.1.5 Composite process
a process that consists of other processes and only one type of control construct.

4.1.6 Precondition
a kind of condition that must always be true just prior to the execution of a process in a formal specification.

4.1.7 Postcondition
a kind of condition that must always be true just after the execution of a process in a formal specification.

4.1.8 Event
<UML> a notable occurrence at a particular point in time.

4.1.9 Resource
anything participating in a process to help its performance.
NOTE Resource can be either physical or virtual things.

4.2 Abbreviated terms

MDR
Metadata Registry
[ISO/IEC 11179-3:2003, 3.4.5]
MFI
Metamodel framework for interoperability
[ISO/IEC 19763-1:2007, 4.2]

MFI Ontology registration
[ISO/IEC 19763-3:2007, 4.2]

MFI Process
ISO/IEC 19763-5, Information technology – Metamodel framework for interoperability (MFI) – Part 5: Metamodel for process model registration

MFI Core
ISO/IEC 19763-2, Information technology – Metamodel framework for interoperability (MFI) – Part 2: Core model

MFI Goal&Role
ISO/IEC 19763-8, Information technology – Metamodel framework for interoperability (MFI) – Part 8: Metamodel for role and goal registration

MFI Service
ISO/IEC 19763-7, Information technology – Metamodel framework for interoperability (MFI) – Part 7: Metamodel for service registration

PSL

UML
Unified Modeling Language (see ISO/IEC 19501:2005)

5 Structure of MFI Process

5.1 Overview of MFI Process

MFI Process provides a generic facility to register administrative information of process models described by specific modeling languages. Figure 2 shows the metamodel for process model registration.

Process_Model is a specification that is the result of modeling Process, describing what the Process does and how it is done. Process_Modeling_Language specifies the modeling language that Process_Model uses to represent processes. Process can be triggered by Event, which is expressed as a notable occurrence of a process.

Atomic_Process and Composite_Process are two kinds of Process. Atomic_Process is a process that has no sub-process, while Composite_Process consists of other processes that can be either atomic processes or composite processes. In MFI Process, Composite_Process is defined to have only one kind of Control_Construct to connect its sub-processes.

A process can transform Input to Output to achieve the given purpose of Process. Either Input or Output may refer to Resource, which can be any virtual or physical thing participating in a process to help its performance. Particularly, the same instance of Resource can be referred to by Input or Output of any processes in the registry. Moreover,
binding constraints between Input/Output of a process and its sub-processes are recorded by different roles that Input/Output plays in different processes and the relation from Output to Input as well.

Figure 2 – The metamodel for process model registration

Precondition defines a kind of condition that must always be true just prior to the execution of a process in a formal specification, while Postcondition specifies the condition that must always be true just after the execution of a process in a formal specification. They can be used to restrict Input and Output respectively.

5.2 Relationship between MFI Process and other parts in MFI

Figure 2 shows the relationship between MFI Process and other parts in MFI.

Process model is one kind of registered target in MFI Core. So Process inherits ModelClassifier from MFI Core and declare the code of registered process model by fixing the value of model type as PM.

A process can achieve a set of goals, which are instances of Goal in MFI Role&Goal. The relationship between MFI Process and MFI Role&Goal means that a goal can be achieved by zero to many instances of Process and a process can achieve one to many instances of Goal. On the other hand, Service in MFI Service can be used to realize Process. The relationship between MFI Process and MFI Service means that a process can be realized by zero to many instances of Service and a service can achieve only one Process.

The attribute "type" of Input and Output can be declared as the URI of registered Ontology_Atomical_Construct based on MFI Ontology Registration, which means that ontology and its constructs can be used annotated inputs and outputs of a process.
5.3 MFI Process

The MFI Process is shown as a UML Class diagrams, with each Class being described as follows.

(1) Superclasses
immediate inherited classes

(2) Attributes

n. attribute name: datatype and multiplicity
-Use: Mandatory or Optional condition for attribute
-Description: description for content and purpose of attribute

(3) References

n. reference name: datatype and multiplicity
-Use: Mandatory or Optional condition for attribute
-Description: description for content and purpose of attribute

(4) Constraints
- reference name: Class name and multiplicity if exposed reference exists
- binding constraint: description about enforcement derived from a reference
- constraints specified if necessary, in natural language

NOTE PM is declared as the type code Of Process Model that can be registered as a kind of ModelClassifier.
The instance of Process Model is a modeled process with a specific process modeling language.
5.3.1 Process
Process is an abstract metaclass representing the process described by a process model to be registered, which is the superclass of Atomic_Process and Composite_Process.

(1) Superclasses
ModelClassifier, Administered Item (from MDR)

(2) Attributes
1. **URI**: String [1..1]
 - **Use**: Mandatory
 - **Description**: URI where a process exists

2. **name**: String [1..1]
 - **Use**: Mandatory
 - **Description**: Name of a process.

3. **orderNumber**: Integer [1..1]
 - **Use**: Optional
 - **Description**: A number allocating to a process to identify a process

4. **type**: String [1..1]
 - **Use**: Mandatory
 - **Description**: The type of a registered process. “A” denotes Atomic_Process and “C” denotes Composite_Process.

5. **stateType**: typeCode [1..1]
 - **Use**: Optional
 - **Description**: A type code specifying the current state of a process.
 NOTE The code set of the state of a process should be defined by each MFI Process registry, seeing Table D.1 in Annex D.

(3) References
1. **containedIn**: Composite_Process [0..*]
 - **Use**: Mandatory
 - **Description**: The processes that are contained in a registered process.

2. **describedBy**: Process_Model [1..*]
 - **Use**: Mandatory
 - **Description**: Process_Model specifying a specification of the registered process.

3. **triggeredBy**: Event [0..*]
 - **Use**: Optional
 - **Description**: Event that triggers execution of a process.

4. **hasInput**: Input [0..*]
 - **Use**: Optional
 - **Description**: Input that will be transferred by a process.

5. **hasOutput**: Output [0..*]
 - **Use**: Optional
 - **Description**: Output that is generated as the results after executing the process.
6. **hasPrecondition**: Precondition [0..*]
 - **Use**: Optional
 - **Description**: The condition that should be satisfied after executing a process.

7. **hasPostcondition**: Postcondition [0..*]
 - **Use**: Optional
 - **Description**: The condition that should be satisfied after executing a process.

(4) **Constraints**
The value of attribute “URI” has to be unique in this metaclass.

5.3.2 **Process_Model**
Process_Model is a metaclass designating a specification that is the result of modeling a process.

(1) **Superclasses**
Administered Item(from MDR)

(2) **Attributes**
1. **name**: String [1..1]
 - **Use**: Mandatory
 - **Description**: Name of a process.

2. **URI**: String [1..1]
 - **Use**: Mandatory
 - **Description**: URI where a process exists.

(3) **References**
1. **describes**: Process [0..*]
 - **Use**: Optional
 - **Description**: The process that may be described by a process model.

2. **modelType**: Process_Modeling_Language [1..*]
 - **Use**: Mandatory
 - **Description**: The modeling language used to describe a process model.

(4) **Constraints**
None

5.3.3 **Process_Modeling_Language**
Process_Modeling_Language is a metaclass representing the modeling language of a process model.

(1) **Superclasses**
Administered Item(from MDR)

(2) **Attributes**
1. **name**: String [1..1]
 - **Use**: Mandatory
 - **Description**: Name of the process modeling language that is used to describe a process. Its value can be one of the values in column “name” of Table 1 in Annex C.
2. version: String [1..1]
 -Use: Optional
 -Description: A string identifies the version number about a process modeling language.

(3) References
1. usedBy: Process_Model [1..1]
 -Use: Mandatory
 -Description: The process model that adopts the modeling language.

(4) Constraints
The value of attribute “name” has to be unique in this metaclass.

5.3.4 Composite_Process
Composite_Process is a metaclass designating the process that contains other sub-processes, which might be either atomic process or composite process. And the contained sub-processes are connected by only one kind of control construct.

(1) Superclasses
Process

(2) Attributes
None

(3) References
1. consistsOf: Process [1..*]
 -Use: Mandatory
 -Description: The sub-processes contained in a process.

2. restrictedBy: Control_Construct [0..1]
 -Use: Optional
 -Description: The specified type of control construct that is used to connect processes contained in a composite process.

(4) Constraints
The value of attribute “name” has to be unique in this metaclass.
Exists at least one Process whose “containedIn” is this Composite_Processs.

5.3.5 Atomic_Process
Atomic_Process is a metaclass designating the process that has no sub-process.

(1) Superclasses
Process

(2) Attributes
None

(3) References
None

(4) Constraints
5.3.6 Event
Event is a metaclass designating a notable occurrence that triggers a process.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. description: String [1..1]
 - Use: Mandatory
 - Description: The description addressing the possible occurrence to be happened to a process.

2. type: String [1..1]
 - Use: Mandatory
 - Description: The type of an event. Its value could be “internal”, “external” or “conditional”.

(3) References
1. triggers: Process [0..1]
 - Use: Optional
 - Description: The process that is triggered by the event.

(4) Constraints
None

5.3.7 Input
Input is a metaclass specifying the resources that will be transferred by the process model.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. name: String [1..1]
 - Use: Mandatory
 - Description: Name of the input resource.

2. type: URI [1..1]
 - Use: Mandatory
 - Description: URI of the concept from a specified ontology.

(3) References
1. restrictedBy: Precondition [0..*]
 - Use: Optional
 - Description: The conditions attached to the input of a process. It should be satisfied before executing a process.

2. refersTo: Resource [0..*]
 - Use: Optional
 - Description: The resources participating in a process.

3. inner: Input [0..*]
4. outer: Input [0..1]
-Use: Optional
-Description: The input of a sub-process can be recorded as that of its parent processes.

4) Constraints
The value of attribute “name” has to be unique in this metaclass

5.3.8 Output
Output is a metaclass specifying the resources that are generated by a process.

(1) Superclasses
Administered Item(from MDR)

(2) Attributes
1. name: String[1..1]
-Use: Mandatory
-Description: Name of the output resource.

2. type: URI[1..1]
-Use: Mandatory
-Description: URI of the concept from a specified ontology.

(3) References
1. restrictedBy: Postcondition [0..*]
-Use: Optional
-Description: The conditions attached to the output of a process. It should be satisfied after executing a process.

2. refersTo: Resource [0..*]
-Use: Optional
-Description: The resources participating in a process.

3. inner: Output [0..*]
-Use: Optional
-Description: The output of a composite process can be recorded as that of its sub-process.

4. outer: Output [0..1]
-Use: Optional
-Description: The output of a sub-process can be recorded as that of its parent processes.

5. links: Input [0..*]
-Use: Optional
-Description: The output of a process can be the input of other processes.

4) Constraints
The value of attribute “name” has to be unique in this metaclass
5.3.9 Resource
Resource is a metaclass designating the resources participating in a process.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. name: String [1..1]
 - Use: Mandatory
 - Description: Name of a thing that participates in performing a process.

2. URI: String [1..1]
 - Use: Mandatory
 - Description: URI where a resource exists.

3. stateType: stateTypeCodeOfResource [1..1]
 - Use: Optional
 - Description: A type code specifying the state type of resources participating in the process.
 NOTE The code set of state of Resource should be defined by each MFI Process registry, seeing Table D.2 in Annex D.

(3) References
1. referredTo: Input [0..*]
 - Use: Optional
 - Description: Input that the resource is referred to.

2. referredTo: Output [0..*]
 - Use: Optional
 - Description: Output that the resource is referred to.

(4) Constraints
The value of attribute “URI” should be unique in this metaclass.

5.3.10 Control_Construct
Control_Construct is a metaclass designating constraint relationship between sub-processes.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. componentType: typeCodeOfControlConstruct [0..1]
 - Use: Mandatory
 - Description: A type code specifying the type of control construct that is used in a composite.
 NOTE The code set of control construct should be defined by each MFI Process registry, seeing Table D.3 in Annex D.

(3) References
1. connects: Composite_Process [0..1]
 - Use: Mandatory
 - Description: The composite processes connected by the specified type of control construct.
5.3.11 Precondition
Precondition is a metaclass designating a kind of condition that must always be true just prior to the execution of a process.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. description: string [1..1]
 -Use: Mandatory
 -Description: The formal description of a precondition.

(3) References
1. restricts: Input [0..*]
 -Use: Optional
 -Description: The inputs that the precondition restricts.

(4) Constraints
The precondition of a composite process should be specified by that of the involved processes and the corresponding control constructs

5.3.12 Postcondition
Postcondition is a metaclass designating a kind of condition that must always be true after the execution of a process.

(1) Superclasses
Administered Item (from MDR)

(2) Attributes
1. description: String [1..1]
 -Use: Mandatory
 -Description: The formal description of a postcondition.

(3) References
1. restricts: Output [0..*]
 -Use: Optional
 -Description: The outputs that the postcondition restricts.

(4) Constraints
The postcondition of a composite process should be specified by that of the involved processes and the corresponding control constructs
Annex A
(informative)

Examples of MFI Process registration

In this section, two cases will be studied to illustrate how to register various kinds of process models based on MFI-5 and enable semantic interoperation between them. It sounds that MFI-5 can harmonize with existing specifications related to process/process model.

Case 1: BravoAir reservation service (http://www.daml.org/services/owl-s/1.0/examples.html)

BravoAir reservation service is expressed in OWL-s to designate the processes of online flight booking. More specifically, BravoAir process consists of a sequence of sub-processes, involving two atomic processes respectively called GetDesiredFlightDetails and SelectAvailableFlight, and a composite process named BookFlight.

```
-->
  - <process:CompositeProcess rdf:ID="BravoAir_Process">  
    <rdfs:label>This is the top level process for BravoAir</rdfs:label>  
    - <process:composedOf>
      - <process:Sequence>
        - <process:components rdf:parseType="Collection">
          <process:AtomicProcess rdf:about="#GetDesiredFlightDetails" />
          <process:AtomicProcess rdf:about="#SelectAvailableFlight" />
          <process:CompositeProcess rdf:about="#BookFlight" />
        </process:components>
      </process:Sequence>
    </process:composedOf>
  </process:CompositeProcess>
```

BookFlight comprise two atomic processes Login and ConfirmReservation.

```
  - <process:CompositeProcess rdf:ID='BookFlight'>
    - <process:composedOf>
      - <process:Sequence>
        - <process:components rdf:parseType="Collection">
          <process:AtomicProcess rdf:about="#Login" />
          <process:AtomicProcess rdf:about="#ConfirmReservation" />
        </process:components>
      </process:Sequence>
    </process:composedOf>
  </process:CompositeProcess>
```

Each instance of Process has several Input and Output, carrying Artifacts to fulfill a common purpose. Meanwhile, corresponding control constraints will also be added to Input and Output respectively to restrict the execution of the process model and obtain the desirable results.
Then the registration information of Composite_Process, Atomic_Process, Process_Model, Control_Construct and Resource will be illustrated in Figure A.1.

![Diagram of BravoAir Reservation Service](image-url)

Figure A.1 – Registration information of BravoAir Reservation Service
Case 2: process for manufacturing a GT350 (from Annex C of ISO 18629-12)

The GT-350 manufacturing process is divided into six main areas. They are “make interior”, “make drive”, “make trim”, “make engine”, “make chassis” and “final assembly”. Particularly, the first five tasks are all unordered with respect to each other but they must all be complete before final assembly takes place.

The following is the fragment of manufacturing sub-process “make_engine”.

Figure A.2 shows the registration information of “make_engine”.

```
(subactivity make_block make_engine)
(subactivity make-harness make_engine)
(subactivity make-wires make_engine)
(subactivity assemble_engine make_engine)

(forall (?occ)

  (not (occurrence_of ?occ make_engine))

  (exists (?occ1 ?occ2 ?occ3 ?occ4)

    (and (occurrence_of ?occ1 make_block)

      (occurrence_of ?occ2 make_harness)

      (occurrence_of ?occ3 make_wires)

      (occurrence_of ?occ4 assemble_engine)

      (subactivity_occurrence ?occ1 ?occ)

      (subactivity_occurrence ?occ2 ?occ)

      (subactivity_occurrence ?occ3 ?occ)

      (subactivity_occurrence ?occ4 ?occ)

      (forall (?s1 ?s2 ?s3 ?s4)

        (implies (and (leaf_occ ?s1 ?occ1)

          (leaf_occ ?s2 ?occ2)

          (leaf_occ ?s3 ?occ3)

          (rest_occ ?s1 ?occ1)

          (min_precedes ?s1 ?s4 make_engine)

          (min_precedes ?s2 ?s4 make_engine)

          (min_precedes ?s3 ?s4 make_engine)))))
```
Figure A.2 – Registration information of sub-process “make_engine”
Annex B
(informative)

Collaboration between MFI members

Annex B shows the exemplary collaboration between MFI members, especially the semantic interoperation based on the cooperation between MFI Process and MFI Ontology registration.

There are two process models existing on the web. One is named Withdraw Deposit and described with BPEL. If we input valid AccountID and password, the output will be an amount of RMB. The other is Sell Goods expressed in OWL-s, which is used to get expected Goods by Currency. Now users intend to exchange information between these two process models and enable interoperation between them.

For this purpose, it is required to match the output message of Withdraw Deposit process to the input message of Sell Goods process. First of all, we will search the process model registry based on MFI Process registration for semantic registration of both Withdraw Deposit and Sell Goods, as the bottom of Figure 8 suggests. Obviously, input/output of these two models are referred to designated artifacts which are interrelated semantically because RMB is a kind of Currency in Currency Ontology. Then registration information of Currency Ontology on the top of Figure 8 explains the inherent relation between these two concepts in a precise way. Therefore, it is feasible for agent to fill in the Artifact_Constraint within process models and establish semantic relation between them. That is, there is semantic relation between the output message of Withdraw Deposit process and the input of Sell Goods process, which will promote interoperation between these two process models.
Annex C
(informative)

List of process modeling languages

It is advisable that the value of attribute “name” of “Process_Modeling_Language” can be one of the values in column “name” of Table 1.

Table C.1 – List of Process_Modeling_Languages

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWL-S</td>
<td>A language that conforms to “OWL Web Ontology Language for Web Service”, which specifying Semantic Markup for Web Services. (see bibliography item [1])</td>
</tr>
<tr>
<td>BPMN</td>
<td>Business Process Modeling Notation, Object Management Group, 2008. (see bibliography item [2])</td>
</tr>
<tr>
<td>BPEL</td>
<td>Business Process Execution Language for Web Service (BPEL/BPEL4WS), 2003-05-03, Version 1.1. (see bibliography item [3])</td>
</tr>
<tr>
<td>IDEF0</td>
<td>IDEF0(Integration Definition for Function Modeling) is a function modeling methodology for describing manufacturing functions, which offers a functional modeling language for the analysis, development, reengineering, and integration of information systems; business processes; or software engineering analysis. (see bibliography item [4])</td>
</tr>
<tr>
<td>IDEF3</td>
<td>IDEF3(Integrated DEFinition for Process Description Capture Method) is a business process modeling method complementary to IDEF0. It is a scenario-driven process flow description capture method intended to capture the knowledge about how a particular system works. (see bibliography item [5])</td>
</tr>
<tr>
<td>DFD</td>
<td>DFD(Data Flow Diagram) is a graphical representation of the flow of data through an information system.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

© ISO/IEC 2009 – All rights reserved
Annex D
(informative)

Code type lists

MFI Process provides a generic and flexible facility to register process models described by different modeling languages. MFI Process registries established by specific applications are quite different. The annex of this document provides three kinds of typed code lists, i.e. code type list of state of processes, code type list of state of resources and code type list of control constructs, as examples.

Table D.1 shows the code set of state of a process. Any revision on the listed codes is allowed for specific MFI Process registries.

Table D.1 – Code type list of state of a process

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR</td>
<td>Normal</td>
<td>Normal indicates that the process executes well.</td>
</tr>
<tr>
<td>EXP</td>
<td>Exception</td>
<td>Exception states that the process cannot execute as designed and has been halted.</td>
</tr>
</tbody>
</table>
| EXT | Exit | Exit states that the process has been executed successfully.
The condition for exiting a process should be specified. |
| PAU | Pause | Pause states that the process stops temporarily.
The condition for pausing and restarting the paused process should be specified respectively. |
| Others | | |

Table D.2 shows the code set of state of a resource. Any revision on the listed codes is allowed for specific MFI Process registries.

Table D.2 – Code type list of state of a resource

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCU</td>
<td>Occupied</td>
<td>Occupied indicates that the resource has been used in a specified process and cannot participate in another one.</td>
</tr>
<tr>
<td>VAC</td>
<td>Vacant</td>
<td>Occupied indicates that the resource can be used in a specified process.</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D.3 shows the code set of control construct. Any revision on the listed codes is allowed for specific MFI Process registries.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnyOrder</td>
<td>AnyOrder is defined to allow execution of processes in an unspecified order. It can be expressed as a set of processes.</td>
</tr>
<tr>
<td>Sequence</td>
<td>Sequence is defined to execute processes in order. It can be expressed as an array of processes.</td>
</tr>
<tr>
<td>Choice</td>
<td>Choice is defined for the case that only one of the successor processes can be executed after performing its predecessors. Its representation must include the guard condition that specifies which successor process is allowed to execute.</td>
</tr>
<tr>
<td>Split</td>
<td>Split is defined for the case that the successors of a process might be performed in parallel. It should explicitly indicate whether the divided processes must execute synchronously or not.</td>
</tr>
<tr>
<td>Join</td>
<td>Join is defined for the case that predecessors of a process must be executed before it is performed. It should explicitly indicate whether the processes before join node must complete synchronously or not.</td>
</tr>
<tr>
<td>Loop</td>
<td>Loop is defined for the case that some predecessors of a process may be executed iteratively until it is performed. It should record the condition of stopping the iterating process. Meanwhile, the process designating the starting point of Loop and that designating the end of Loop must be specified explicitly.</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

