
Proof Support for Common Logic

Till Mossakowski1,2, Mihai Codescu3, Oliver Kutz2,
Christoph Lange4, and Michael Gruninger5

1 DFKI GmbH, Bremen, Germany
2 University of Bremen, Germany

3 Friedrich-Alexander University, Erlangen-Nürnberg, Germany
4 University of Birmingham, UK
5 University of Toronto, Canada

Abstract We present an extension of the Heterogeneous Tool Set HETS that enables proof
support for Common Logic. This is achieved via logic translations that relate Common Lo-
gic and some of its sublogics to already supported logics and automated theorem proving
systems. We thus provide the first full theorem proving support for Common Logic, in-
cluding the possibility of verifying meta-theoretical relationships between Common Logic
theories.

1 Introduction

Common Logic (CL) is an ISO-standardised6 language based on untyped first-order logic, but
extending it in several ways that ease the formulation of complex first-order theories. [?] dis-
cusses in detail the motivations and philosophical background of CL, arguing that it not only
is a natural formalism for knowledege representation in the context of the Web, but that it also
constitutes a natural evolution from the canonical textbook notation and semantics of first-order
logic (FOL for short), dispensing with some deeply entrenched views that are reflected in FOL’s
syntax (and that partly go back to, e.g., Frege’s metaphysical views), in particular the segregation
of objects, functions, and predicates, fixed arities and signatures, and strict syntactic typing.

Although there are several (also large) CL theories around, surprisingly little tool support has
been realised so far. In this work, we fill this gap using the Heterogeneous Tool Set HETS [?,?,?]).
HETS is a general purpose analysis and proof management tool for logical theories. We show that
the HETS architecture eases the implementation of a comprehensive tool set for CL, including
parsing, theorem proving, checking for consistency, and more.

This paper is organised as follows. In Section 2, we recall CL, and discuss its use cases and
hitherto existing tool support. In Sect. 3, we recall HETS and its foundation in institutions. Sec-
tion 4 introduces the main contribution of the paper, namely the integration of CL into HETS,
enabling proof support for CL and its sublogics via various logic translations to already sup-
ported logics and automated reasoners. Section 5 discusses meta-theoretical relations between
CL theories, and Section 6 illustrates the achieved CL reasoning support for both theorem prov-
ing and establishing meta-theoretical relationships between CL theories. For a detailed descrip-
tion of the functionalities of HETS, see the HETS user guide [?] (and the special CL version of

6 Published as “ISO/IEC 24707:2007 — Information technology — Common Logic (CL): a framework
for a family of logic-based languages” [?]

the guide).7 HETS is currently available for Linux and Mac OS X from the HETS home page
http://hets.informatik.uni-bremen.de, where you also find packages ready for
Ubuntu Linux.

2 Common Logic

CL is based on untyped first-order logic, but extends first-order logic in two ways: (1) any term
can be used as function or predicate, and (2) sequence markers allow for talking about sequences
of individuals directly, and in particular, provide a succinct way for axiomatising polyadic func-
tions and predicates.8

A CL signature Σ (called vocabulary in CL terminology) consists of a set of names, with a
subset called the set of discourse names, and a set of sequence markers. Discourse names denote
first-class objects, which may be individuals, predicates and functions (note that by Common
Logic’s “wild west” syntax, any individual can be used in functional and predicate position).
Non-discourse names denote second-class objects which can be predicates or functions, but not
individuals. Sequence markers denote sequences of (first-class) objects. A Σ -model consists of
a set UR, the universe of reference (consisting of all first-class and second-class objects), with
a non-empty subset UD ⊆ UR, the universe of discourse (the first-class objects) 9, and four
mappings:

– rel from UR to subsets of UD∗ = {〈x1, . . . ,xn〉 | x1, . . . ,xn ∈ UD} (i.e., the set of finite se-
quences of elements of UD);

– fun from UR to total functions from UD∗ into UD;
– int from names in Σ to UR, such that int(v) is in UD if and only if v is a discourse name;
– seq from sequence markers in Σ to UD∗.

A Σ -sentence is a first-order sentence, where predications and function applications are written
in a higher-order like syntax as (t s). Here, t is an arbitrary term, and s is a sequence term,
which can be a sequence of terms t1 . . . tn, or a sequence marker. However, a predication (t s) is
interpreted like the first-order formula holds(t,s), and a function application (t s) like the first-
order term app(t,s), where holds and app are fictitious symbols denoting the semantic objects
rel and fun. In this way, CL provides a first-order simulation of a higher-order language, while
still keeping the option of representing ordinary FOL predicate and function symbols via non-
discourse names (recall that these denote second-class objects which can only be functions and
predicates, but no individuals).

Interpretation of terms and formulae is as in first-order logic, with the difference that the
terms at predicate and function symbol positions are interpreted with rel and fun, respectively,
in order to obtain the predicate or function, as discussed above. A further difference to first-
order logic is the presence of sequence terms (namely sequence markers and juxtapositions

7 Available at https://svn-agbkb.informatik.uni-bremen.de/Hets/trunk/doc/
UserGuideCommonLogic.pdf

8 Strictly speaking, only the sequence markers go beyond first-order logic.
9 The CLIF dialect of CL also requires that the natural numbers and the strings over unicode characters

are part of the universe of discourse. Even if we use CLIF input syntax, we ignore this requirement here,
as it is not a general requirement for CL, and the role of datatypes is currently subject of the discussion
of the revision of the CL standard.

2

of terms), which denote sequences in UD∗, with term juxtaposition interpreted by sequence
concatenation. For details, see [?]. As an example, consider the formula of the upper ontology
DOLCE ∀φ(φ(x)), which stands for

∧
ψ∈Π (ψ(x)), where predicate variables φ ,ψ range over a

finite set Π of explicitly introduced universals. In CL, this is written, using the Lisp-like syntax
of the CL Interchange Format CLIF:

(forall (?phi) (if (pi ?phi) (?phi ?x)))

Sequence markers add even more flexibility. For example, it is possible to express that the
items of a list are distinct as follows (using the sequence marker “. . .”):

(distinct) //the empty sequence is distinct
(distinct x) //singleton sequences are distinct
(iff (distinct x y ...) //recursion for length > 1

(and (not (= x y))
(distinct x ...)
(distinct y ...)))

For the rationale and methodology of CL and the possibility to define dialects covering dif-
ferent first-order languages, see [?]. CL also includes modules as a syntactic category, with a
semantics that restricts locally the universe of discourse (see [?] for technical details of the re-
vised semantics for CL modules, which is also considered in the current revision process of
ISO/IEC 24707).

2.1 Uses of Common Logic

COLORE (Common Logic Ontology Repository)10 is an open repository of over 600 Common
Logic ontologies. One of the primary applications of COLORE is to support the verification of
ontologies for common-sense domains such as time, space, shape, and processes. Verification
consists in proving that the ontology is equivalent to a set of core ontologies for mathemat-
ical domains such as orderings, incidence structures, graphs, and algebraic structures. COLORE
comprises core ontologies that formalise algebraic structures (such as groups, fields, and vec-
tor spaces), orderings (such as partial orderings, lattices, betweenness), graphs, and incidence
structures in Common Logic, and, based on these, representation theorems for generic ontolo-
gies for the above-mentioned common-sense domains. COLORE is mostly written in CL.Fol (in
the sense of Sect. 4.1 below), only 13 ontologies use CL.Seq, and only one uses CL.Imp.

SUMO (Suggested Upper Merged Ontology) is a large upper ontology, covering a wide
range of concepts. It is one candidate for the “standard upper ontology” of IEEE working group
1600.1. While SUMO has originally been formulated in the Knowledge Interchange Format
(KIF11), SUMO-CL is a CL variant of SUMO produced by Kojeware (see also [?] for a dis-
cussion of higher-order aspects in SUMO). The SUMO-KIF version with all the mid-level and
domain ontologies that are shipped with SUMO consists of roughly 32,000 concepts in 150,000
lines of specification.

fUML (Foundational UML) is a subset of the Unified Modelling Language (UML) version
2 defined by the Object Management Group (OMG). The OMG has specified a “foundational
execution semantics” for fUML using CL (see http://www.omg.org/spec/FUML/).

10 http://code.google.com/p/colore/
11 Common Logic can be considered the ISO-standardised and revised successor of KIF.

3

PSL (Process Specification Language, ISO standard 18629), developed at the National In-
stitute of Standards and Technology (NIST), is an ontology of processes, their components and
their relationships. It is also part of COLORE.

2.2 Tool support for Common Logic

Current software tool support for Common Logic is still ad hoc, and is primarily restricted
to parsers and translators between CLIF and the TPTP exchange syntax for first-order logic.
The work in [?] proposed an environment for ontology development in Common Logic, named
Macleod; although this work includes detailed design documents for the environment, there is
as yet no available implementation. Similarly [?] proposed a system architecture for COLORE
that supports services for manipulating Common Logic ontologies, once more merely with basic
functionality such as parsing being implemented. There exist some ad-hoc syntax translations
of Common Logic to first-order provers, but these seem not to be backed up with a semantic
analysis of their correctness.

3 The Heterogeneous Tool Set HETS

We now recall our previous work in HETS [?,?,?], which we will later extend with support for
Common Logic. HETS is an open source software providing a general framework for formal
methods integration and proof management. One can think of HETS as acting like a motherboard
where different expansion cards can be plugged in, the expansion cards here being individual
logics (with their analysis and proof tools) as well as logic translations. The HETS motherboard
already has plugged in a number of expansion cards (e.g., theorem provers like SPASS, Vampire,
LEO-II, Isabelle and more, as well as model finders). Hence, a variety of tools is available,
without the need to hard-wire each tool to the logic at hand.

HETS consists of logic-specific tools for the parsing and static analysis of basic logical the-
ories written in the different involved logics, as well as a logic-independent parsing and static
analysis tool for structured theories and theory relations. The latter of course needs to call the
logic-specific tools whenever a basic logical theory is encountered.

The semantic background of HETS is the theory of institutions [?], formalising the notion of
a logic. An institution provides a notion of signature, and for each signature, a set of sentences,
a class of models and a satisfaction relation between models and sentences. Furthermore, an
institution provides a notion of signature morphism, such that sentences can be translated along
signature morphisms, and models against signature morphisms, in a way that satisfaction is
preserved. Based on this foundation, HETS supports a variety of different logics. The following
ones are most important for use with Common Logic:

OWL 2 is the Web Ontology Language recommended by the World Wide Web Consortium
(W3C, http://www.w3.org); see [?]. It is used for knowledge representation on the
Semantic Web [?]. HETS supports OWL 2 DL and the provers Fact++ and Pellet.

FOL/TPTP is untyped first-order logic with equality12, underlying the interchange language
TPTP [?], see http://www.tptp.org. [?] offers several automated theorem proving

12 FOL/TPTP is called SoftFOL in the HETS implementation. SoftFOL extends first-order logic with equal-
ity this with a softly typed logic used by SPASS; however in this paper we will only use the sublanguage
corresponding to FOL.

4

(ATP) systems for SPASS [?], Vampire [?], Eprover [?], Darwin [?], E-KRHyper [?], and
MathServe Broker13 [?].

CFOL is many-sorted first-order logic with so-called sort generation constraints, expressing
the generation of a sort from (constructor) functions. In particular, this allows the axiomat-
isation of lists and other datatypes. CFOL is a sublogic of the Common Algebraic Specific-
ation Language CASL, see [?,?]. Proof support for CFOL is available through a poor man’s
induction scheme in connection with automated first-order provers like SPASS [?], or via a
comorphism to HOL.

HOL is typed higher-order logic [?]. HETS actually supports several variants of HOL, among
them THF0 (the higher-order version of TPTP [?]), with automated provers LEO-II [?],
Satallax [?] and an automated interface to Isabelle [?], as well as the logic of Isabelle, with
an interactive interface.

HETS supports the input languages of these logics directly. Adding a new logic can be done
by writing a number of Haskell data types and functions, providing abstract syntax, parser, static
analysis and prover interfaces for the logic. It is also possible to integrate logics (as described in
[?]) by specifying them in a logical framework like LF [?].

For expressing meta relations between logical theories, HETS supports the Distributed Onto-
logy Language (DOL), which is currently being standardised as ISO 17347.14 DOL can express
relations of theories such as logical consequences, relative interpretations of theories and con-
servative extensions. DOL is also capable of expressing such relations across theories written in
different logics, as well as translations of theories along logic translations.

HETS’ logic translations are formalised as so-called institution comorphisms [?]. A comorph-
ism from logic I to logic J consists of

– a translation Φ of I-signatures to J-signatures,
– for each signature Σ , a translation αΣ of Σ -sentences in I to Φ(Σ)-sentences in J, and
– for each signature Σ , a translation βΣ of Φ(Σ)-models in J to Σ -models in I,15

such that the following satisfaction condition holds:

βΣ (M)I |= ϕ iff M |=J
αΣ (ϕ)

for each signature Σ , Σ -sentence ϕ and Φ(Σ)-model M.
A comorphism is:

– faithful if logical consequence is preserved and reflected along the comorphism:

Γ |=I
ϕ iff α(Γ) |=J

α(ϕ)

– model-expansive if each βΣ is surjective;
– a subinstitution comorphism if Φ is an embedding, each αΣ is injective and each βΣ is

bijective16;
– an inclusion comorphism if Φ and each αΣ are inclusions, and each βΣ is the identity.

13 which chooses an appropriate ATP upon a classification of the FOL problem
14 See http://www.ontoiop.org
15 Actually, α and β also have to commute with translations along signature morphisms.
16 An isomorphism if model morphisms are taken into account.

5

It is easy to see that each subinstitution comorphism is model-expansive and each model-
expansive comorphism is also faithful. Faithfulness means that a proof goal Γ |=I ϕ in I can be
solved by a theorem prover for J by just feeding the theorem prover with α(Γ) |=J α(ϕ). Subin-
stitution comorphism preserve the semantics of more advanced DOL structuring constructs such
as renaming and hiding.

The notion of theoroidal comorphisms provides a generalisation of the notion of a comorph-
ism: Φ may map signatures to theories (where a theory (Σ ,Γ) is a signature Σ equipped with a
set Γ of Σ -sentences).

4 Common Logic and The Heterogeneous Tool Set

Our main motivation for the present work is to remedy the situation of little tool support for
Common Logic (see Sect. 2.2). We thus have extended HETS with several kinds of tool support
for Common Logic:

– a parser for the Common Logic Interchange Format (CLIF) and the Knowledge Interchange
Format (KIF);

– a sublogic analysis for CL;
– a connection of CL to well-known first-order theorem provers such as SPASS, Darwin

and Vampire, so that logical consequences of CL theories can be proved;
– a connection of CL to the higher-order provers Isabelle/HOL and LEO-II in order to per-

form induction proofs in theories involving sequence markers;
– a connection to first-order model finders such as Darwin that allow one to find models for
CL theories;

– support for proving interpretations between CL theories to be correct;
– a translation that eliminates the use of CL modules. Since the semantics of CL modules

is specific to CL, this elimination of modules is necessary before sending CL theories to a
standard first-order prover;

– a translation of the Web Ontology Language OWL to CL;
– a translation of propositional logic to CL.

All this is based upon the formal semantic background provided by institutions (see Sect. ??++).

4.1 Sublogics of Common Logic

By equipping Common Logic as defined in Sect. 2 with signature morphisms, Common Logic
(CL) can be formalised as an institution, see [?]. We define four subinstitutions (sublogics) of
CL, all defined through restrictions on the sentences. Moreover, given a sublogic CL.X, we also
define a logic CL.X] which results from CL.X by eliminating the use of the module construct.

CL.Full: full Common Logic,
CL.Seq: Common Logic with sequence markers, but without impredicative higher-order like

features. That is, in each predication and function application (t s), t must be a name.
CL.Imp: Common Logic with impredicative features, but without sequence markers.
CL.Fol: Common Logic without impredicative features and without sequence markers.

6

HETS currently supports parsing CLIF and KIF. The Common Logic Interchange Format
(CLIF) provides a Lisp-like syntax for Common Logic, while KIF is an older precursor of Com-
mon Logic. Proof support for CL, for which there is no dedicated theorem prover available, can
be obtained by in HETS using logic translations to a logic supported by some prover, as discussed
next.

4.2 Logic translations supported by HETS

CL.Full#

HOL

SROIQ

FOL
(TPTP)

CFOL

CL.Seq#

CL.Fol#

CL.Imp#

th

red: full higher-order logic

orange: some second-order constructs

yellow: semi-decidable first-order logic

green: decidable ontology language

inclusion

model-expansive comorphism

faithful comorphism

th theoroidal comorphism

inf comorphism generating infinite signatures

inf inf

th

th

th subinstitution

Figure 1. Graph of logics related to Common Logic that are currently supported by HETS

The logic graph in Fig. 1 is naturally divided into two parts: on the left hand-side, we find
classical first- and higher-order logics, on the right hand-side the sublogics of Common Logic.
Within both parts, we have subinstitution relations: for Common Logic, these are obvious (they
are even inclusions), while on the left hand-side, the subinstitutions are a bit more complex.
Namely, the subinstitution comorphism from SROIQ (the logic of OWL 2) into FOL is the
standard translation [?], FOL is an obvious sublogic of CFOL, and the translation from CFOL
to HOL expands the generation axioms to explicit Peano-style higher-order induction axioms.

Between the parts of the logic graph, the relations are less tight. Due to the different model
theories of classical first and higher-order logics on the one hand-side and Common Logic on
the other hand-side, we cannot expect subinstitution comorphisms, but only model-expansive
and faithful comorphisms to run between the different parts.

In the direction from classical logic to Common Logic, the comorphisms in Fig. 1 are the
following ones:

– a comorphism from classical FOL to CL.Fol. It maps constants to discourse names and
function and predicate symbols to non-discourse names, with a straight-forward sentence
and model translation;

– a comorphism from SROIQ to CL.Fol, corresponding to the standard translation [?], and

7

– a comorphism from SROIQ to CL.Full. Here, the higher-order like features of Common
Logic are used to define all features of OWL 2, including Boolean operators on concepts,
inverses of roles, etc. directly, such that the translation of sentences becomes trivial. In
particular, distinct plays a crucial role for the translation of number restrictions. Due to
the theory needed for axiomatisation of the OWL 2 features, this comorphism is theoroidal.

In the direction from Common Logic to classical logic, the comorphisms in Fig. 1 are all
quite similar. The idea behind these translations is to make explicit in the signature the func-
tional and relational interpretations of the elements of the universe. The symbols introduced for
this depend on the source sublogic. Namely, if arbitrary terms are allowed on function/predicate
positions in the sentences, the interpretation is given by the signature symbols rel and fun; oth-
erwise, the interpretation is given by signature symbols with the same name as the CL names.
Furthermore, the arity of these symbols is determined by the presence of sequence markers: if
the sublogic contains sequence markers, then in the translated signature we introduce the data-
type of lists17 which is then used as an argument; otherwise, the arguments are simply from the
universe. The table on the next page gives an overview of the signature translation component
of the four comorphisms in the table below. We denote by n an arbitrary name and by m an
arbitrary marker in a CL signature.

CL.Fol→ FOL CL.Imp→ FOL
CL.Seq→ CFOL CL.Full→ CFOL

op n : 1
op n : k op fun : k

pred n : k pred rel : k
for each k ∈ N for each k ∈ N

op n : ind op n : ind
op m : list op m : list

op n : list→ ind op fun : ind× list→ list
op ++ : list× list→ list op ++ : list× list→ list

pred n : list pred rel : ind× list

The sentence translation component of the comorphisms, denoted αΣ , is defined inductively
on the structure of sentences. The inductive base is given in the table below, where t(s) denotes
a term or a predicate in a CL sentence.

t(αΣ (s1), . . . ,αΣ (sk)) relk(αΣ (t),αΣ (s1), . . . ,αΣ (sk))
t(αΣ (s)) rel(αΣ (t),αΣ (s))

On the bottom line of the table, we denote by αΣ (s) the translation of a sequence s to CFOL.
Recall that a sequence s is either a sequence marker, or a juxtaposition of terms or a juxtaposition
of sequences. The translation is defined inductively as taking each sequence marker to its corres-
ponding constant of sort list, each juxtaposition of terms t1 . . . tn to cons(αΣ (t1), . . . ,cons(αΣ (tn),nil))
and each juxtaposition of sequences s1 . . .sn to αΣ (s1)++ . . .++αΣ (sn).

Moreover, we have defined a comorphism CL.Full→ HOL similarly with CL.Full→ CFOL,
except that now HOL lists are used.

17 Here, we need many-sortedness and sort generation constraints from CFOL.

8

Note that for the comorphisms in the top line of our table we generate infinite signatures. Of
course, a tool can only work with finite signatures. Therefore, after translating a CL theory (Σ ,Γ)
along one of the two translations, we further apply a syntactic transformation γ that removes
from the signature of the translated theory the symbols that do not appear in the translation of
Γ , denoted by Γ ′. It is easy to notice that by doing this we have Γ ′ |=Σ e ⇐⇒ Γ ′ |=γ(Σ) e for
each γ(Σ)-sentence e.

The proofs that each of these comorphisms are faithful are similar. The key idea is to define
a function δΣ taking CL-models to (C)FOL-models such that βΣ (δΣ (M)) and M have the same
Γ -consequences e where Γ is a Σ -theory, M is a Γ -model and e is a Σ -sentence that only uses
terms on function/predicate positions with the same number of arguments as in Γ , and then the
proof follows using the satisfaction condition of the comorphism.

CL.Full#

CL.Seq#

CL.Fol#

CL.Imp#

CL.Full

CL.Seq

CL.Fol

CL.Imp

Figure 2. Elimination of the module
construct in CL

Finally, Fig. 2 shows the square of CL.Full and
its sublogics Cl.Imp, CL.Seq, and CL.Fol and the
square of logics obtained by eliminating the module
construct from the languages (denoted by CL.Full#

CL.Imp#, CL.Seq#, and CL.Fol#):

– the obtained cube relates CL (and its sublogics)
with the respective restrictions;

– logics without a module construct are obtained
(essentially) as a re-writing using quantifier re-
strictions;

– while the restrictions are obviously inclusions,
the reverse translations are obtained as subinsti-
tutions.

5 Relations between Common Logic Texts

Common Logic itself does not support the specification of logical consequences, nor relative
theory interpretations, nor other features that speak about structuring and comparing logical
theories. Therefore, DOL must be used for these purposes, and consequently the Common Logic
Repository COLORE [?] already contains several DOL files.

Relations between logical theories are expressed in the so-called development graph calculus
[?]. Development graphs are a simple kernel formalism for (heterogeneous) structured theorem
proving and proof management.

A development graph consists of a set of nodes (corresponding to whole structured specific-
ations or parts thereof), and a set of arrows called definition links, indicating the dependency
of each involved structured specification on its subparts. Each node is associated with a sig-
nature and some set of local axioms. The axioms of other nodes are inherited via definition
links. Definition links are usually drawn as black solid arrows, denoting an import of another
specification.

Complementary to definition links, which define the theories of related nodes, theorem links
serve for postulating relations between different theories. Theorem links, drawn as red solid
arrows, are the central data structure to represent proof obligations arising in formal develop-
ments.

We support the following relations between Common Logic texts:

9

Importation is defined in ISO/IEC 24707:2007 [?] as virtual copying of a resource. In HETS,
a definition link to the imported theory is created. HETS also supports URIs for importing
resources. The allowed URI schemes are file:, http: and https:.
(cl− imports f i l e : / / / a b s o l u t e / p a t h / t o / s o me F i l e . c l i f)
(cl− imports h t t p : / / someDomain . com / p a t h / t o / s o m e F i l e . c l i f)
(cl− imports h t t p s : / / someDomain . com / p a t h / t o / s o m e F i l e . c l i f)

Relative interpretation is formally defined in [?]. Informally, one module relatively interprets
those “modules whose theorems are preserved within the current module through [a] map-
ping. There exists a mapping between modules such that all theorems of the other module
hold in the current module after the mapping is applied.” [?] The formal semantics of a
relative interpretation is that each model of the target theory, when reduced to the source
theory (along the signature morphism induced by the symbol map), is a model of the source
theory.
HETS represents relative interpretation by a theorem link in the development graph.
The DOL syntax for relative interpretations is

interpretation i : someCLText to someTargetCLText end
or

interpretation i : someCLText to someTargetCLText =
<symbol map (see below)> end

where a symbol map allows for renaming symbols, e.g.
name1Old 7→18 name1New, name2Old 7→ name2New.

We provide an example interpretation (without symbol maps) below.
Just as with imports (see above), HETS supports different types of references to resources
here, such as URIs.

Conservative extension A theory T2 conservatively extends a theory T1 if each model of T1 can
be expanded to a model of T2. Conservative extensions are another form of proof obligation
in HETS (annotated to definition links or theorem links), and they need to be discharged with
specific tools. HETS interfaces several conservativity checkers for OWL 2, and features a
built-in conservativity checker for CFOL.

Non-conservative extension is informally defined as follows: One module non-conservatively
extends other modules if its “axioms entail new facts for the shared lexicon [= signature in
the terminology of this paper] of the [other] module(s). [That is, the] shared lexicon between
the current module and a [non-conservatively extended] module are not logically equivalent
with respect to their modules.” [?].
HETS represents non-conservative extension by a definition link in the development graph.

Except for importation, one can specify an optional symbol map (name map) in a relation.19

Names from the source theory are mapped to names from the target theory. The semantics is
given by a signature morphism, which is used to decorate the corresponding (definition or the-
orem) link.

18 alternative ASCII syntax: |->
19 While the “copy” semantics of Common Logic importations does not permit renamings, DOL’s exten-

sion mechanism offers an alternative possibility to reuse ontologies and rename some of their symbols,
using the “importedSpec with name1Old 7→ name1New, name2Old 7→ name2New then importingSpec”
syntax.

10

Relative Interpretation in COLORE We give an example for relative interpretation in COLORE.
The COLORE [?] module RegionBooleanContactAlgebra relatively interprets the mod-
ule AtomlessBooleanLattice. These two modules specify axioms about Booleans; thus,
they have the same signature.

For use with HETS, we have integrated COLORE as an external repository into the CommonLogic/colore
of the HETS library [?].
d i s t r i b u t e d−o n t o l o g y C O L O R E−R e l a t i v e I n t e r p r e t a t i o n

l o g i c CommonLogic

o n t o lo g y A t o m l e s s B o o l e a n L a t t i c e =
http://colore.googlecode.com/svn/trunk/ontologies/complex/lattices/boolean_lattice.clif

then
. (f o r a l l (x) (e x i s t s (y) (and (not (= y 0)) (l e q y x))))
end

o n t o lo g y R e g i o n B o o l e a n C o n t a c t A l g e b r a =
http://colore.googlecode.com/svn/trunk/ontologies/core/contact_algebras/boolean_contact_algebra.

clif
then
. (f o r a l l (x)

(i f (and (not (= x 0)) (not (= x 1)))
(e x i s t s (y) (and (complement x y) (C x y)))))

end

i n t e r p r e t a t i o n i : A t o m l e s s B o o l e a n L a t t i c e to R e g i o n B o o l e a n C o n t a c t A l g e b r a

6 Proof Support for Common Logic in HETS

The proof calculus for development graphs [?] reduces global theorem links to local proof goals.
Local proof goals (indicated by red nodes in the development graph) can eventually be dis-
charged using a theorem prover, i.e. by using the “Prove” menu of a red node.

The graphical user interface (GUI) for calling a prover is shown in Fig. 3 — we call it “Proof
Management GUI”. The top list on the left shows all goal names prefixed with their proof status
in square brackets. A proved goal is indicated by a ‘+’, a ‘–’ indicates a disproved goal, a space
denotes an open goal, and a ‘×’ denotes an inconsistent theory (think of a fallen ‘+’).

When opening this GUI when processing the goals of one node for the first time, it will show
all goals as open. Within this list one can select those goals that should be inspected or proved.
The GUI elements are the following:

– The button ‘Display’ shows the selected goals in the ASCII syntax of this theory’s logic in
a separate window.

– The ‘Proof details’ button opens a window that shows for each proved goal the used axioms,
its proof script, and its proof — the level of detail depends on the used theorem prover.

– The list ‘Pick Theorem Prover:’ lets you choose one of the connected provers. ‘Prove’
launches the selected prover; the theory along with the selected goals is translated via the
shortest possible path of comorphisms into the prover’s logic.

– The pop-up choice box below ‘Selected comorphism path:’ lets you pick a (composed)
comorphism to be used for the chosen prover. In HETS, the comorphisms CL.Fol→ FOL and
CL.Imp→ FOL have been united into CommonLogic2CASLCompact, while CL.Seq→
CFOL and CL.Full→ CFOL have been united into CommonLogic2CASLFol.

11

Figure 3. HETS goal and prover interface Figure 4. Interface of Vampire prover

– Since the amount and kind of sentences sent to an ATP system is a major factor for the
performance of the ATP system, it is possible to fine tune the lists of the axioms and proven
theorems that will comprise the theory of the next proof attempt.

– When pressing the bottom-right ‘Close’ button the window is closed and the status of the
goals’ list is integrated into the development graph. If all goals have been proved, the selec-
ted node turns from red into green.

– All other buttons control selecting list entries.

6.1 Consistency Checker and Disproving

Since proofs are void if theories are inconsistent, consistency of theories should be checked
by the HETS Consistency checker interface, which provides access to a list of model finders.
As with proving, suitable comorphisms can be used to bridge logics such as FOL/TPTP that
come with model finders. For example, when checking consistency of a CL.Imp theory, using
the comorphism CL.Imp→ FOL, the FOL model finder Darwin can be used for model finding.
Darwin will output the found model as a theory in FOL syntax. With the model translation
component β of the comorphism, the found model can be translated back to a model in CL.Imp.

Each development graph node that is red (i.e. has open proof obligations) also features a
“Disprove” button. HETS then adds then negation of the proof goal to the theory of the node and
calls model finders. If a model of the thus extended theory has been found, it is a countermodel
to the provability of the goal.

7 Discussion and Outlook

We have established the first full theorem proving support for Common Logic as well as the
possibility of verifying meta-theoretical relationships between Common Logic theories via an
integration into the HETS system, primarily exploiting the power of logic translation and the
structuring capabilities of the DOL language. As CL is a popular language within ontology

12

communities interested in greater expressive power than provided by the decidable OWL DL
language, this is a substantial step towards supporting more ambitious ontology engineering
efforts.

We have used HETS for the verification of a number of consequences and interpretations of
COLORE theories, as well as for the check of their consistency. During this process, numerous
errors in COLORE have been found and corrected. The sublogic analysis for Common Lo-
gic provided by HETS was of particular importance here, because automation and efficiency of
proofs greatly varies among the sublogics. Most proof goals in the CL.Fol theories of COLORE
could be proved using SPASS, while for COLORE’s graph theories involving recursive use of
sequence markers, the interactive theorem prover Isabelle needed to be used.

Related work includes the bridges of provers like Isabelle and Ωmega to automated theorem
proving (ATP) systems like SPASS. HETS also provides bridges from Common Logic (and other
logics) to ATP systems. However, while other systems have the bridges built-in in a hard-coded
way, HETS realises bridges as institution comorphisms and supports them as first-class citizens.
Hence, HETS offers a greater flexibility by letting the user chose among different bridges (or even
develop new ones). We have exploited this flexibility by providing different bridges, depending
on the sublogic of Common Logic in which a given theory is formulated.

Future work should analyse non-recursive uses of sequence markers (as they occur in theor-
ies that are generic over the arity of certain predicates and functions) more carefully and provide
automated first-order proof support for these. We also plan to integrate our work into the web
ontology repository engine ontohub.org.

13

Optional Appendix (not for inclusion in the final version)

A Institutions for Common Logic and its Neighbours

We now cast Common Logic and its most important neighbours in the logic graph as institu-
tions, following [?,?], but adding a more fine-grained analysis of CL’s subinstitutions and their
connections.

First, we recall how specification frameworks in general may be formalized in terms of so-
called institutions [?].

An institution I = (Sig,Sen,Mod, |=) consists of

– a category Sig of signatures,
– a functor Sen : Sig→Set giving, for each signature Σ , a set of sentences Sen(Σ), and for

each signature morphism σ : Σ→Σ ′, a sentence translation map
Sen(σ) : Sen(Σ)→Sen(Σ ′), where Sen(σ)(ϕ) is often written σ(ϕ),

– a functor Mod : Sigop→Cat 20 giving, for each signature Σ , a category of models Mod(Σ),
and for each signature morphism σ : Σ→Σ ′, a reduct functor
Mod(σ) : Mod(Σ ′)→Mod(Σ), where Mod(σ)(M′) is often written M′ |σ , and

– a satisfaction relation |=Σ ⊆ |Mod(Σ)|×Sen(Σ) for each Σ ∈ Sig,

such that for each σ : Σ→Σ ′ in Sig the following satisfaction condition holds:

M′ |=Σ ′ σ(ϕ) ⇐⇒ M′ |σ |=Σ ϕ

for each M′ ∈Mod(Σ ′) and ϕ ∈ Sen(Σ).

Definition 1 (Untyped First-order Logic (FOL)). In the institution FOL= of untyped first-
order logic with equality, signatures are first-order signatures, consisting of a set of function
symbols with arities, and a set of predicate symbols with arities. Signature morphisms map
symbols such that arities are preserved. Models are first-order structures, and sentences are first-
order formulas. Sentence translation means replacement of the translated symbols. Model reduct
means reassembling the model’s components according to the signature morphism. Satisfaction
is the usual satisfaction of a first-order sentence in a first-order structure.

Definition 2 (Many-sorted First-order Logic with sort generation constraints (CFOL) [?,?]).
The institution FOLms= of many-sorted first-order logic with equality is similar to FOL=, the
main difference being that signatures are many-sorted first-order signatures, consisting of sorts
and typed function and predicate symbols, and that formulas need to be well-typed. For details,
see [?]. A sort generation constraint states that a given set of sorts is generated by a given set of
functions. Technically, sort generation constraints also contain a signature morphism compon-
ent; this allows them to be translated along signature morphisms without sacrificing the satis-
faction condition. Formally, a sort generation constraint over a signature Σ is a triple (S̃, F̃ ,θ),
where θ : Σ→Σ , Σ = (S,TF,PF,P), S̃⊆ S and F̃ ⊆ TF∪PF.

20 Here, Cat is the quasi-category of all categories. As metatheory, we use ZFCU , i.e. ZF with axiom of
choice and a set-theoretic universe U . This allows for the construction of quasi-categories, i.e. categories
with more than a class of objects.

14

A Σ -constraint (S̃, F̃ ,θ) is satisfied in a Σ -model M iff the carriers of M|θ of sorts in S̃ are
generated by the function symbols in F̃, i.e. for every sort s ∈ S̃ and every value a ∈ (M|θ)s,
there is a Σ -term t containing only function symbols from F̃ and variables of sorts not in S̃ such
that ν#(t) = a for some valuation ν into M|θ . Here, ν# is the usual extension of the valuation ν

from variables to terms. ut

Although not strictly more expressive than untyped FOL=, introducing a sort structure allows a
cleaner and more principled design of first-order ontologies. Moreover, axioms involving differ-
ent sorts can be stated more succinctly, and static type checking gives more control over correct
modelling.

Definition 3 (Common Logic - CL). Common Logic (CL) has first been formalised as an insti-
tution in [?]. We here only provide the missing details that have not been presented in Section 2.
A signature morphism consists of two maps between these sets, such that the property of being
a discourse name is preserved and reflected.21 Model reducts leave UR, UD, rel and fun un-
touched, while int and seq are composed with the appropriate signature morphism component.
Sentence translation along a signature morphism is just replacement of names.

Definition 4 (Description Logics: OWL and its profiles EL,QL,RL). Signatures of the de-
scription logic A L C consist of a set A of atomic concepts, a set R of roles and a set I
of individual constants, while signature morphisms provide respective mappings. Models are
single-sorted first-order structures that interpret concepts as unary and roles as binary predic-
ates. Sentences are subsumption relations C1 vC2 between concepts, where concepts follow the
grammar

C ::= A |>|⊥|C1tC2 |C1uC2 |¬C |∀R.C |∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be ABox sentences,
which are membership assertions of individuals in concepts (written a : C for a ∈ I) or pairs
of individuals in roles (written R(a,b) for a,b ∈I ,R ∈R). Sentence translation and reduct is
defined similarly as in FOL=. Satisfaction is the standard satisfaction of description logics.

The logic S ROI Q, which is the logical core of the Web Ontology Language OWL 2 DL22

extends A L C with the following constructs: (i) complex role boxes (denoted by S R): these
can contain: complex role inclusions such as R ◦ S v S as well as simple role hierarchies such
as R v S, assertions for symmetric, transitive, reflexive, asymmetric and disjoint roles (called
RBox sentences), as well as the construct ∃R.Self (collecting the set of ‘R-reflexive points’); (ii)
nominals (denoted by O); (iii) inverse roles (denoted by I); qualified and unqualified number
restrictions (Q). S ROI Q can be straightforwardly rendered as an institutions following the
previous examples.

The OWL 2 specification contains three further DL fragments of S ROI Q, called profiles,
namely EL, QL, and RL.23 These are obtained by imposing syntactic restrictions on the language
constructs and their usage, with the motivation that these fragments are of lower expressivity and
support specific computational tasks. For instance, RL is designed to make it possible to imple-
ment reasoning systems using rule-based reasoning engines, QL to support query answering
over large amounts of data, and EL is a sub-Boolean fragment sufficiently expressive e.g. for

21 That is, a name is a discourse name if and only if its image under the signature morphism is.
22 See also http://www.w3.org/TR/owl2-overview/
23 See http://www.w3.org/TR/owl2-profiles/ for details of the specifications.

15

dealing with very large biomedical ontologies such as the NCI thesaurus. To sketch one of these
profiles in some more detail, the (sub-Boolean) description logic E L underlying EL has the
same sentences as A L C but restricts the concept language of A L C as follows:

C ::= B |>|C1uC2 |∃R.C

Given that EL, QL, and RL are obtained via syntactic restrictions but leaving the overall S ROI Q
semantics intact, it is obvious that they are subinstitutions of S ROI Q. ut

Apart from some exceptions24, description logics can be seen as fragments of first-order
logic via the standard translation [?] that translates both the syntax and semantics of various
DLs into untyped first-order logic.

Definition 5 (HOL). [?] presents an institution for a higher-order logic extending Church’s type
theory with polymorphism; this is basically the higher-order logic used in modern interactive
theorem provers like Isabelle/HOL [?] (one additional feature of Isabelle are type classes).

B Institution Comorphisms

We can define a lattice of sublogics for Common Logic, based on its features: sequence markers
and occurrence of arbitrary terms on function/predicate positions of a theory- We thus obtain:

CL.Full : both sequence markers and arbitrary terms on function/predicate positions are al-
lowed. This is the full Common Logic.

CL.Imp : there are no sequence markers in the signature, arbitrary terms on function/predicate
positions are allowed.

CL.Seq : the signature contains sequence markers, but only names are permitted on function/-
predicate positions.

CL.FOL : no sequence markers or other terms than names are used.

Definition 6. Given two institutions I1, I2 with Ii = (Sigi,Seni,Modi, |=i), an institution co-
morphism from I1 to I2 consists of a functor Φ : Sig1 → Sig2 and natural transformations
β : Φ ; Mod2 ⇒Mod1 and α : Sen1 ⇒ Φ ; Sen2, such that the following satisfaction condi-
tion holds:

M′ |=2
Φ(Σ) αΣ (e) ⇐⇒ βΣ (M′) |=1

Σ e,

where Σ is an I1-signature, e is a Σ -sentence in I1 and M′ is a Φ(Σ)-model in I2.

B.1 CL.FOL to CFOL.

A signature Σ = (Names,DNames, /0) is translated to a CFOL signature Φ(Σ) with a single sort,
that we denote by individual, and which has for each name n and each natural number k

– a k-ary function symbol n : individualk→ individual and
– a k-ary predicate symbol n : individualk.

24 For instance, adding transitive closure of roles or fixpoints to DLs makes them decidable fragments of
second-order logic [?].

16

Sentences are mapped inductively on their structure and based on the translation of terms.
Since we are in the FOL sublogic of Common Logic, we know that we have only names on
function/predicate positions, and therefore we can define the translation αΣ of a term f (s)
as αΣ (f (s)) = f (αΣ (s1), . . . ,αΣ (sk)) and the translation of a predication p(s) as αΣ (p(s)) =
p(αΣ (s1), . . . ,αΣ (sk)), if s is a sequence of length k.

For the model reduction component of the comorphism, let Σ = (Names,DNames, /0) be
a Common Logic.FOL signature and let N be a Φ(Σ)-model. Then M = βΣ (N) is defined as
follows:

– URM = Nindividual]Names,
– UDM = Nindividual]DNames,
– for any n ∈ Names, intM(n) = n
– for any x ∈ URM , f unM(x) : (UDM)∗→ UD is defined as f unM(x)(s) = Nx(s1, . . . ,sk) if s

is a sequence of length k of elements of Nindividual and x is in Names, 25, or f unM(x)(s) =
choose(Names), where choose(Names) is a function returning an element of Names other-
wise (that is, either s contains an element from Names or x is an element of Nindividual).

– for any x ∈ URM , relM(x)(s) is defined as either Nx(s1, . . . ,sk), if s is a sequence of length k
of elements of Nindividual and x is in Names, or False, otherwise.

B.2 CL.Imp to CFOL.

A signature Σ = (Names,DNames, /0) is translated to a CFOL signature Φ(Σ) with a single sort,
that we denote by individual, and which has

– a constant n : individual for each domain name n ∈ Names
– a family of function symbols {fun : individualk+1→ individual}k∈N
– a family of predicate symbols {rel : individualk+1}k∈N

Sentences are translated inductively on their structure, with predications t(s) translated to
αΣ (t(s))= rel(αΣ (t),αΣ (s1), . . . ,αΣ (sn)) and terms t(s) translated to αΣ (t(s))= fun(αΣ (t),αΣ (s1), . . . ,αΣ (sn)),
where n is the length of s. Since there are no sequence markers, the length of s is always known.

Given a signature Σ , a Φ(Σ)-model N in CFOL reduces to M = βΣ (N) as follows:

– URM = Nindividual]Names,
– UDM = Nindividual]DNames,
– for any n ∈ Names, intM(n) = n,
– for any x ∈ URM , funM(x)(s) = Nfunk(n,s1, ...,sk) if x is a name and s is a sequence of

elements in Nindividual of length k,26 or funM(x)(s) = choose(Names) otherwise
– for any x ∈ URM , relM(x)(s1, ...,sk) = Nrelk(x,s1, ...,sk) if x is a name and s is a sequence

of elements in Nindividual of length k (with the same notational convention as above), or
relM(x)(s) = False otherwise.

25 Notice that since N is a Φ(Σ)-model, it must provide a function Nx of any arity.
26 Note that we made explicit that we use the interpretation of the function symbol f un : individualk+1→

individual.

17

B.3 Getting finite signatures.

The signatures Φ(Σ) obtained for the two comorphisms are infinite. Of course, a tool works
with finite signatures. A feature of Common Logic is that signatures are implicitly defined by the
symbols used in the sentences of a theory, and reasoning in that theory makes use only of those
symbols. We can therefore apply a syntactic transformation α that removes from the signature of
a theory Γ all symbols that do not occur in Γ . For the first comorphism, this means that for each
name n ∈ DNames, we only introduce a function/predicate symbol of arity k if the sentences in
Γ contain a term/predication where n takes k arguments. Similarly, for the second comorphism,
we keep in the signature only those function symbols f un and predicate symbols rel whose arity
is given by the terms/predications in Γ . Since this transformation is only syntactical, we do not
need to define a corresponding translation between the class of models of (Σ ,Γ) and (Φ(Σ),Γ).
It is however easy to notice that for any Σ -sentence e we have that Γ |=Σ e⇔ Γ |=Φ(Σ) e.

B.4 CL.Seq to CFOL.

A signature Σ = (Names,DNames,Markers) is translated to a CFOL theory (Φ(Σ),Γ) such that

– Φ(Σ) has two sorts, individual and list
– on sort list we have nil : list and cons : individual× list → list and m : list for each m ∈

Markers
– for each n ∈ Names we have a function symbol n : individual, a function symbol n : list →

individual and a predicate symbol n : list
– Γ consists of the sort generation constraint that asserts that list is a free type over its con-

structors nil and cons

Sentences are mapped inductively on their structure, such that each predicate or term t(s) is
mapped to αΣ (t(s)) = t(αΣ (s)).

Given a (Φ(Σ),Γ)-model N, its reduct M = βΣ (N) is defined as follows:

– URM = Nindividual]Names,
– UDM = Nindividual]DNames,
– for any n ∈ Names, intM(n) = n,
– for any x ∈ URM , funM(x)(s) = Nx(s) if x is a name and s is a sequence of elements in

Nindividual, or funM(x)(s) = choose(Names) otherwise
– for any x ∈ URM , relM(x)(s1, ...,sk) = Nx(s) if x is a name and s is a sequence of elements

in Nindividual, or relM(x)(s) = False otherwise.
– for any m ∈Markers, seqM(m) = Nm.

B.5 CL.Full to CFOL.

A signature Σ = (Names,DNames,Markers) is translated to a CFOL theory (Φ(Σ),Γ) such that

– Φ(Σ) has two sorts, individual and list
– on sort list we have nil : list and cons : individual× list → list and m : list for each m ∈

Markers
– Φ(Σ) has a function symbol fun : individual× list → individual, predicate symbol rel :

individual× list and constant symbols n : individual for each n ∈ Names

18

– Γ consists of the sort generation constraint that asserts that list is a free type over its con-
structors nil and cons

Sentences are translated inductively on their structure, with predications t(s) translated to
rel(t,s) and terms t(s) translated to fun(αΣ (t),αΣ (s)).

Given a (Φ(Σ),Γ)-model N, its reduct M = βΣ (N) is defined as follows:

– URM = Nindividual]Names,
– UDM = Nindividual]DNames,
– for any n ∈ Names, intM(n) = n,
– for any x ∈ URM , funM(x)(s) = N f un(x,s) if s is a sequence of elements in Nindividual, or

funM(x)(s) = choose(Names) otherwise
– for any x ∈ URM , relM(x)(s1, ...,sk) = Nrel(x,s) if s is a sequence of elements in Nindividual,

or relM(x)(s) = False otherwise.
– for any m ∈Markers, seqM(m) = Nm.

Note that for the last two comorphisms we make use of the translation of a sequence to
CFOL defined on page 8.

B.6 Faithful comorphisms

The proofs that these four comorphisms are faithful are similar, therefore we only present it for
the translation CL.Seq to CFOL.

Theorem 1. The comorphism CL.Seq to CFOL is faithful.

Proof:
It suffices to prove that for any CL-signature Σ , if αΣ (Γ) |=CFOL

Φ(Σ) αΣ (e), then Γ |=CL
Σ

e.

We define a mapping δΣ : ModCL(Σ)→ModCFOL(Φ(Σ)) such that βΣ (δΣ (M)) and M have
the same Γ -consequences e, where Γ is a Σ -theory, M is a Γ -model and e is a Σ -sentence that
only uses terms on function/predicate positions with the same number of arguments as in Γ .

We denote N = δΣ (M) and NDNames = Names\DNames. N is defined as follows:

– Nindividual = UDM]{intM(n)|n ∈ NDNames};
– the interpretation of the sort list and of the operations cons, nil and ++ is the expected one
– Nm = seqM(m) for each m ∈Markers
– Nn = intM(n) for each n ∈ Names
– for each x in Names, Nx(s) = f unM(intM(x))(s) if s has only elements in UDM , or Nx(s) =

choose(NDNames), otherwise
– for each x in Names, Nx(s) = relM(intM(x))(s) if s has only elements in UDM , or Nx(s) =

False, otherwise

It is easy to see that βΣ (δΣ (M)) and M have the same Γ -consequences.

Let M be a Σ -model such that M |=CL
Σ

Γ and assume that e does not hold in M. Then e also
does not hold in βΣ (δΣ (M)). By the satisfaction condition of the comorphism we get that αΣ (e)
does not hold in δΣ (M). But it is easy to see that M |= Γ implies δΣ (M) |= αΣ (Γ) and thus we
get a contradiction with the fact that αΣ (Γ) |=CFOL

Φ(Σ) αΣ (e).
ut

depend

19

B.7 FOL to CL.Fol

A FOL signature is translated to CL.Fol by turning all constants into discourse names, and all
other function symbols and predicate symbols into non-discourse names. A FOL sentence is
translated to CL.Fol by a straightforward recursion, the base being translations of predications:

αΣ (P(t1, . . . , tn)) = (P αΣ (t1) . . . αΣ (tn))

Within terms, function applications are translated similarly:

αΣ (f (t1, . . . , tn)) = (f αΣ (t1) . . . αΣ (tn))

A CL.Fol model is translated to a FOL model by using the universe of discourse as FOL uni-
verse. The interpretation of constants is directly given by the interpretation of the corresponding
names in CL.Fol. The interpretation of a predicate symbol P is given by using relM(intM(P))
and restricting to the arity of P; similarly for function symbols (using f unM). The satisfaction
condition is straightforward.

B.8 FOL to CFOL

A FOL signature is mapped to (many-sorted) CFOL by introducing a sort s, and letting all
function and predicate symbols be typed by a list of s’s, the length of the list corresponding to
the arity. The rest is straightforward.

B.9 CFOL to HOL

A CFOL signature is translated to a HOL signature by mapping all sorts to type constants, and
all function and predicate symbols to constants of the respetive higher-order type. Translation of
sentences and models is then straightforward, except for sort generation constraints.

For a sort generation constraint

(
•
S,
•

F ,θ : Σ̄→Σ)

we assume without loss of generality that all the result sorts of function symbols in
•

F occur in
•
S. Let

•
S= {s1; . . . ; sn},

•
F= { f1 : s1

1 . . .s
1
m1
→s1; . . . ; f1 : sk

1 . . .s
k
mk
→sk}

The sort generation constraint is now translated to the second-order sentence

∀Ps1 : pred(θ(s1)) . . .∀Psn : pred(θ(sn))• (ϕ1∧·· ·∧ϕk)⇒
∧

j=1,...,n

∀x : θ(s j)•Ps j(x)

where

ϕ j = ∀x1 : θ(s j
1), . . . ,xm j : θ(s j

m j
)•

 ∧
i=1,...,m j ; s j

i ∈
•
S

Ps j
i
(xi)

⇒ Ps j
(
θ(f j)(x1, . . . ,xm j)

)
For a proof of the satisfaction condition, see [?].

20

B.10 SROIQ to FOL

Translation of Signatures Φ((C,R,I)) = (F,P) with

– function symbols: F = {a(1)|a ∈ I}
– predicate symbols P = {A(1)|A ∈ C}∪{R(2)|R ∈ R}

Translation of Sentences Concepts are translated as follows:

– αx(A) = A(x)
– αx(¬C) = ¬αx(C)
– αx(CuD) = αx(C)∧αx(D)
– αx(CtD) = αx(C)∨αx(D)
– αx(∃R.C) = ∃y.(R(x,y)∧αy(C))
– αx(∃U.C) = ∃y.αy(C)
– αx(∀R.C) = ∀y.(R(x,y)→ αy(C))
– αx(∀U.C) = ∀y.αy(C)
– αx(∃R.Self) = R(x,x)
– αx(≤ nR.C) = ∀y1, . . . ,yn+1.

∧
i=1,...,n+1(R(x,yi)∧αyi(C))→

∨
1≤i< j≤n+1 yi = y j

– αx(≥ nR.C) = ∃y1, . . . ,yn.
∧

i=1,...,n(R(x,yi)∧αyi(C))∧
∧

1≤i< j≤n yi 6= y j
– αx({a1, . . .an}) = (x = a1∨ . . .∨ x = an)

For inverse roles R−, R−(x,y) has to be replaced by R(y,x), e.g.

αx(∃R−.C) = ∃y.(R(y,x)∧αy(C))

This rule also applies below.
Sentences are translated as follows:

– αΣ (C v D) = ∀x.(αx(C)→ αx(D))
– αΣ (a : C) = αx(C)[a/x]27

– αΣ (R(a,b)) = R(a,b)
– αΣ (Rv S) = ∀x,y.R(x,y)→ S(x,y)
– αΣ (R1; . . . ;Rn v R) =
∀x,y.(∃z1, . . .zn−1.R1(x,z1)∧R2(z1,z2)∧ . . .∧Rn(zn−1,y))→ R(x,y)

– αΣ (Dis(R1,R2)) = ¬∃x,y.R1(x,y)∧R2(x,y)
– αΣ (Ref(R)) = ∀x.R(x,x)
– αΣ (Irr(R)) = ∀x.¬R(x,x)
– αΣ (Asy(R)) = ∀x,y.R(x,y)→¬R(y,x)
– αΣ (Tra(R)) = ∀x,y,z.R(x,y)∧R(y,z)→ R(x,z)

Translation of Models

– For M′ ∈ModFOL(φΣ) define βΣ (M′) := (∆ , ·I) with ∆ = |M′| and AI = M′A,a
I = M′a,R

I =
M′R.

Proposition 1. CI =
{

m ∈M′T hing|M′+{x 7→ m} |= αx(C)
}

27 Replace x by a.

21

Proof. By Induction over the structure of C.

– AI = M′A =
{

m ∈M′T hing|M′+{x 7→ m} |= A(x)
}

– (¬C)I = ∆ \CI =I.H. ∆ \{m∈M′T hing|M′+{x 7→m} |=αx(C)}= {m∈M′T hing|M′+{x 7→
m} |= ¬αx(C)}

The satisfaction condition holds as well.

B.11 SROIQ to CL.Fol

This comorphism can be obtained as the composition SROIQ→ FOL→ CL.Fol.

B.12 SROIQ to CL.Full

Translation of Signatures A signature is translated by mapping all individuals, concepts and
roles to discourse names, and augmenting this with the following CL.Imp theory:

(forall (c x) (iff ((OWLnot c) x) (not (c x))))
(forall (c x) (iff ((OWLand c d) x) (and (c x) (d x))))
(forall (c x) (iff ((OWLor c d) x) (or (c x) (d x))))
(forall (r c x) (iff ((OWLsome r c) x)

(exists (y) (and (r x y) (c y)))))
(forall (r c x) (iff ((OWLall r c) x)

(forall (y) (implies (r x y) (c y)))))
(forall (x y) (OWLU x y))
(forall (r x) (iff ((OWLself r) x) (r x x)))
(forall (r x y) (iff ((OWLinv r) x y) (r x y)))
(forall (c d) (iff ((OWLsubsumes c d)

(forall (x) (if (c x) (d x))))))
(forall (r s) (iff ((OWLsubsumesRole r s)

(forall (x y) (if (r x y) (s x y))))))
(forall (r s) (iff ((OWLdisjoint r s)

(forall (x y) (not (and (r x y) (s x y)))))))
(forall (r) (iff ((OWLref r)

(forall (x y) (r x x)))))
(forall (r) (iff ((OWLirr r)

(forall (x y) (not (r x x))))))
(forall (r) (iff ((OWLasy r)

(forall (x y) (if (r x x) (not (r y x)))))))
(forall (r) (iff ((OWLtra r)

(forall (x y) (if (and (r x y) (r y z)) (r x z))))))
(forall (r c) (iff ((OWLmax r c) x)

(forall (y) (not (and (r x y) (c y))))))

(distinct)
(distinct x)
(iff (distinct x y ...)

22

(and (not (= x y))
(distinct x ...)
(distinct y ...)))

(forall (p) (holds-all p))
(forall (p x ...) (iff (holds-all p x ...)

((and (p x) (holds-all p ...)))))
(forall (p) (not (holds-some p)))
(forall (p x ...) (iff (holds-some p x ...)

((or (p x) (holds-some p ...)))))

((same-length))
(forall (x ...) (not ((same-length) x ...)))
(forall (x ...) (not ((same-length x ...))))
(forall (x y ...a ...b) (iff ((same-length x ...a) y ...b)

((same-length ...a) ...b)))

(forall (r c x y) (iff ((restrict r c x) y)
(and (r x y) (c y))))

(forall (r c ...) (iff ((OWLmax r c ...) x)
(forall (...a) (if (and ((same-length c ...) ...a)

(holds-all (restrict r c x) ...a))
(not ((distinct ...a)))))))

(forall (r c ...) (iff ((OWLmin r c ...) x)
(exists (...a) (and ((same-length ...) ...a)

(holds-all (restrict r c x) ...a)
((distinct ...a))))))

(forall x (not ((OWLnominal) x)))
(forall ... x y (iff ((OWLnominal y ...) x)

(or (= x y) ((OWLnominal ...) x))))

(forall (r x y) (iff ((OWLcomp r) x y) (r x y)))
(forall (r ... x y)

(iff ((OWLcomp r ...) x y)
(exists (z) (and (r x z) ((OWLcomp ...) z y)))))

Note the use of sequence markers for handling lists of variable length. Functions cannot take
two sequence markers as argument unless they are written in curried form (otherwise, the two
sequences will be concatenated into one argument). Therefore, functions like same-length
use a curried form; that is, two separate function applications are used for the two arguments, as
in ((f x) y).

Translation of Sentences Concepts are translated as follows:

– α(A) = A
– α(¬C) = (OWLnot α(C))
– α(CuD) = (OWLand α(C) α(D))

23

– α(CtD) = (OWLor α(C) α(D))
– α(∃R.C) = (OWLsome α(R) α(C))
– α(∀R.C) = (OWLall α(R) α(C))
– α(∃R.Self) = (OWLself R)
– α(≤ nR.C) = (OWLmax α(R) α(C) (a . . .a))
– α(≥ nR.C) = (OWLmin α(R) α(C) (a . . .a))
– α({a1, . . .an}) = (OWLnominal a1 . . .an)

Here, the sequence (a ...a) repeats an arbitrary name a n times. This is used as a coding
of the natural number n. The function same-length above is then used for quantifying over
all sequences of length n. The term ((same-length c ...) ...a) above tests whether
...a has length n+1, where n is encoded by Note that the value of c is irrelevant here,
it is just used for increasing the length of the sequence ... by one.

Roles are translated by: α(R−) = (OWLinv αR).
Sentences are translated as follows:

– αΣ (C v D) = (OWLsubsumes α(C) α(D))
– αΣ (a : C) = (α(C) a)
– αΣ (R(a,b)) = (α(R) a b)
– αΣ (Rv S) = (OWLsubsumesRole α(R) α(S))
– αΣ (R1; . . . ;Rn v R) = (OWLsubsumesRole (OWLcomp α(R1) . . .α(Rn)) α(R))
– αΣ (Dis(R1,R2)) = (OWLdisjoint α(R) α(S))
– αΣ (Ref(R)) = (OWLref α(R))
– αΣ (Irr(R)) = (OWLirr α(R))
– αΣ (Asy(R)) = (OWLasy α(R))
– αΣ (Tra(R)) = (OWLtra α(R))

Translation of Models

– For M′ ∈ModCL.Imp(ΦΣ) define βΣ (M′) := (∆ , ·I) with ∆ being the universe of discourse
of M′, and the interpretation of individuals, concepts and roles given by the interpretation
of the respective names.

C Further Examples

Relative Interpretation (Standalone Example) This example defines a partial order twice:
once as an extension of a strict partial order, and once directly. Then, we connect both definitions
by a view that expresses the relative interpretation.
l o g i c CommonLogic

o n t o lo g y S t r i c t _ P a r t i a l _ O r d e r =
%% s t r i c t
. (f o r a l l (x)

(not (l t x x)))
%% a s y m m e t r i c
. (f o r a l l (x y)

(i f (l t x y)
(not (l t y x))))

%% t r a n s i t i v e
. (f o r a l l (x y z)

(i f (and (l t x y)

24

(l t y z))
(l t x z)))

end

o n t o lo g y P a r t i a l _ O r d e r _ F r o m _ S t r i c t _ P a r t i a l _ O r d e r =
S t r i c t _ P a r t i a l _ O r d e r

then
%% d e f i n e " l e s s or e q u a l " i n t e r m s o f " l e s s than " ’
. (f o r a l l (x y)

(i f f (l e x y)
(or (l t x y)

(= x y))))
end

o n t o lo g y P a r t i a l _ O r d e r =
%% r e f l e x i v e
. (f o r a l l (x)

(l e x x))
%% a n t i s y m m e t r i c
. (f o r a l l (x y)

(i f (and (l e x y)
(l e y x))

(= x y)))
%% t r a n s i t i v e
. (f o r a l l (x y z)

(i f (and (l e x y)
(l e y z))

(l e x z))))
end

i n t e r p r e t a t i o n v : P a r t i a l _ O r d e r to P a r t i a l _ O r d e r _ F r o m _ S t r i c t _ P a r t i a l _ O r d e r

Heterogeneous Views from OWL to Common Logic An interpretation from one ontology to
another ontology in the same logic has been shown in Sect. 5, but it is also possible to have
interpretations across logics, as long as there is a translation between these logics that is known
to HETS (cf. Sect. 4.2).

The following example establishes an interpretation between the OWL Time ontology and
its reimplementation in Common Logic, using the “OWL22CommonLogic” translation:
l o g i c OWL
o n t o lo g y TimeOWL =

Class : T e m p o r a l E n t i t y
ObjectProperty : b e f o r e

Domain : T e m p o r a l E n t i t y
Range : T e m p o r a l E n t i t y
C h a r a c t e r i s t i c s : T r a n s i t i v e

end

l o g i c CommonLogic
o n t o lo g y TimeCL =

%% CommonLogic e q u i v a l e n t o f Domain and Range above
. (f o r a l l (t 1 t 2)

(i f (b e f o r e t 1 t 2)
(and (T e m p o r a l E n t i t y t 1)

(T e m p o r a l E n t i t y t 2))))
%% CommonLogic e q u i v a l e n t o f T r a n s i t i v e above
. (f o r a l l (t 1 t 2 t 3)

(i f (and (b e f o r e t 1 t 2)
(b e f o r e t 2 t 3))

(b e f o r e t 1 t 3)))
%% A new axiom t h a t ca nn o t be e x p r e s s e d i n OWL
. (f o r a l l (t 1 t 2)

(or (b e f o r e t 1 t 2)
(b e f o r e t 2 t 1)
(= t 1 t 2)))

25

end

i n t e r p r e t a t i o n TimeOWLtoCL : { TimeOWL with l o g i c OWL22CommonLogic } to TimeCL
%% As OWL22CommonLogic i s t h e d e f a u l t t r a n s l a t i o n ,
%% i t i s o p t i o n a l t o s p e c i f y i t .

Figure 5. Consistency checker results Figure 6. Interface of the SPASS prover

Automated Theorem Proving Systems Interface All ATPs integrated into HETS share the same
GUI, with only a slight modification for the MathServe Broker: the input field for extra options
is inactive. Fig. 6 shows the instantiation for SPASS, where in the top right part of the window
the batch mode can be controlled. The left side shows the list of goals (with status indicators).
If goals are timed out (indicated by ‘t’) it may help to activate the check box ‘Include preceding
proven theorems in next proof attempt’ and pressing ‘Prove all’ again.

On the bottom right the result of the last proof attempt is displayed. The ‘Status:’ indicates
‘Open’, ‘Proved’, ‘Disproved’, ‘Open (Time is up!)’, or ‘Proved (Theory inconsistent!)’. The
list of ‘Used Axioms:’ is filled by SPASS. The button ‘Show Details’ shows the whole output
of the ATP system. The ‘Save’ buttons allow you to save the input and configuration of each
proof for documentation. By ‘Close’ the results for all goals are transferred back to the Proof
Management GUI.

The MathServe system [?] developed by Jürgen Zimmer provides a unified interface to
a range of different ATP systems. Their capabilities are derived from the Specialist Problem
Classes (SPCs) defined upon the basis of logical, language and syntactical properties by Sutcliffe
and Suttner [?]. Only two of the Web services provided by the MathServe system are used by
HETS currently: Vampire and the brokering system. The ATP systems are offered as Web Ser-
vices using standardised protocols and formats such as SOAP, HTTP and XML. Currently, the
ATP system Vampire may be accessed from HETS via MathServe; the other systems are only
reached after brokering.

For details on the ATPs supported, see the HETS user guide [?].

26

Figure 7. Selection of consistency checker Figure 8. HETS Consistency Checker Interface

Consistency Checker Interface The consistency checker interface is shown in Fig. 8. This
GUI is invoked from the ‘Edit’ menu as it operates on all nodes.

The list on the left shows all node names prefixed with a consistency status in square brackets
that is initially empty. A consistent node is indicated by a ‘+’, a ‘–’ indicates an inconsistent
node, a ‘t’ denotes a timeout of the last checking attempt.

For some selection of development graph nodes having Common Logic theories, a model
finder should be selectable from the ‘Pick Model finder:’ list. When pressing ‘Check’, possibly
after ‘Select comorphism path:’, all selected nodes will be checked, spending at most the number
of seconds given under ‘Timeout:’ on each node. Pressing ‘Stop’ allows to terminate this process
if too many nodes have been chosen. Either by ‘View results’ or automatically the ‘Results of
consistency check’ (Fig. 9) will pop up and allow you to inspect the models for nodes, if they
could be constructed.

Figure 9. Consistency checker results

27

